The small octagon with longest perimeter

The convex octagon with unit diameter and maximum perimeter is determined. This answers an open question dating from 1922. The proof uses geometric reasoning and an interval arithmetic based global optimization algorithm to solve a series of non-linear and non-convex programs involving trigonometric functions.

[1]  Frédéric Messine,et al.  A Deterministic Global Optimization Algorithm for Design Problems , 2005 .

[2]  P. Hansen,et al.  Essays and surveys in global optimization , 2005 .

[3]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[4]  K. Reinhardt Extremale Polygone gegebenen Durchmessers. , 1922 .

[5]  Pierre Hansen,et al.  The minimum diameter octagon with unit-length sides: Vincze's wife's octagon is suboptimal , 2003, J. Comb. Theory, Ser. A.

[6]  Frédéric Messine,et al.  Enclosure Methods for Multivariate Differentiable Functions and Application to Global Optimization , 1998, J. Univers. Comput. Sci..

[7]  Basudeb Datta,et al.  A Discrete Isoperimetric Problem , 1997 .

[8]  Ronald L. Graham,et al.  The Largest Small Hexagon , 1975, J. Comb. Theory, Ser. A.

[9]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[10]  Pierre Hansen,et al.  A branch and cut algorithm for nonconvex quadratically constrained quadratic programming , 1997, Math. Program..

[11]  Frédéric Messine,et al.  Deterministic global optimization using interval constraint propagation techniques , 2004, RAIRO Oper. Res..

[12]  D. G. Larman,et al.  The Decomposition of the n-Sphere and the Boundaries of Plane Convex Domains , 1984 .

[13]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[14]  Ferenc Fodor,et al.  On convex polygons of maximal width , 2000 .

[15]  Pierre Hansen,et al.  The Largest Small Octagon , 2001, J. Comb. Theory, Ser. A.