Marginal Values and Returns to Scale for Nonparametric Production Frontiers

We present a unifying linear programming approach to the calculation of various directional derivatives for a very large class of production frontiers of data envelopment analysis (DEA). Special cases of this include different marginal rates, the scale elasticity, and a spectrum of partial and mixed elasticity measures. Our development applies to any polyhedral production technology including, to name a few, the conventional variable and constant returns-to-scale DEA technologies, their extensions with weight restrictions, technologies with weakly disposable undesirable outputs, and network DEA models. Furthermore, our development provides a general method for characterization of returns to scale (RTS) in any polyhedral technology. The new approach effectively removes the need to develop bespoke models for the RTS characterization and calculation of marginal rates and elasticity measures for each particular technology.

[1]  R. Färe,et al.  Profit, Directional Distance Functions, and Nerlovian Efficiency , 1998 .

[2]  Petros Hadjicostas,et al.  One-sided elasticities and technical efficiency in multi-output production: A theoretical framework , 2006, Eur. J. Oper. Res..

[3]  Emmanuel Thanassoulis,et al.  Data Envelopment Analysis:the mathematical programming approach to efficiency analysis , 2008 .

[4]  Finn R. Førsund,et al.  Calculating scale elasticity in DEA models , 2004, J. Oper. Res. Soc..

[5]  Rolf Färe,et al.  A “calculus” for data envelopment analysis , 2008 .

[6]  Cláudia S. Sarrico,et al.  Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software , 2001, J. Oper. Res. Soc..

[7]  V. V. Podinovski,et al.  Bridging the gap between the constant and variable returns-to-scale models: selective proportionality in data envelopment analysis , 2004, J. Oper. Res. Soc..

[8]  Valentin Zelenyuk,et al.  A scale elasticity measure for directional distance function and its dual: Theory and DEA estimation , 2013, Eur. J. Oper. Res..

[9]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[10]  A. V. Volodin,et al.  Constructions of economic functions and calculations of marginal rates in DEA using parametric optimization methods , 2004, J. Oper. Res. Soc..

[11]  Chien-Ming Chen,et al.  Measuring Eco-Inefficiency: A New Frontier Approach , 2011, Oper. Res..

[12]  R. RajivD.BANKE Estimating most productive scale size using data envelopment analysis , 2003 .

[13]  V. V. Podinovski,et al.  Production trade-offs and weight restrictions in data envelopment analysis , 2004, J. Oper. Res. Soc..

[14]  Boaz Golany,et al.  Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions , 1985 .

[15]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[16]  Victor V. Podinovski,et al.  Combining the assumptions of variable and constant returns to scale in the efficiency evaluation of secondary schools , 2014, Eur. J. Oper. Res..

[17]  Victor V. Podinovski Production technologies based on combined proportionality assumptions , 2008 .

[18]  Lawrence M. Seiford,et al.  Recent developments in dea : the mathematical programming approach to frontier analysis , 1990 .

[19]  Jyrki Wallenius,et al.  Ratio-based RTS determination in weight-restricted DEA models , 2011, Eur. J. Oper. Res..

[20]  Timo Kuosmanen,et al.  Weak Disposability in Nonparametric Production Analysis: Reply to Färe and Grosskopf , 2009 .

[21]  R. Färe,et al.  On directional scale elasticities , 2015 .

[22]  R. Färe,et al.  Nonparametric Cost Approach to Scale Efficiency , 1985 .

[23]  H. Mills 8. Marginal Values of Matrix Games and Linear Programs , 1957 .

[24]  Victor V. Podinovski,et al.  Differential Characteristics of Efficient Frontiers in Data Envelopment Analysis , 2010, Oper. Res..

[25]  Ali Emrouznejad,et al.  A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA , 2010, Eur. J. Oper. Res..

[26]  Ole Bent Olesen,et al.  Indicators of ill-conditioned data sets and model misspecification in data envelopment analysis: an extended facet approach , 1996 .

[27]  Rajiv D. Banker,et al.  Returns to Scale in DEA , 2011 .

[28]  Victor V. Podinovski,et al.  Weight Restrictions and Free Production in Data Envelopment Analysis , 2013, Oper. Res..

[29]  Victor V. Podinovski,et al.  Production , Manufacturing and Logistics A simple derivation of scale elasticity in data envelopment analysis , 2009 .

[30]  Victor V. Podinovski,et al.  Mixed partial elasticities in constant returns-to-scale production technologies , 2012, Eur. J. Oper. Res..

[31]  R. Banker,et al.  Piecewise Loglinear Estimation of Efficient Production Surfaces , 1986 .

[32]  Timo Kuosmanen Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs , 2005 .

[33]  John Ruggiero,et al.  Nonparametric estimation of returns to scale in the public sector with an application to the provision of educational services , 2000, J. Oper. Res. Soc..

[34]  Rolf Färe,et al.  Indirect Production Functions. Mathematical Systems in Economics, 10 , 1975 .

[35]  Victor V. Podinovski,et al.  Using data envelopment analysis for the assessment of technical efficiency of units with different specialisations: An application to agriculture ☆ , 2015 .

[36]  C. Roos,et al.  Interior Point Methods for Linear Optimization , 2005 .

[37]  Finn R. Førsund,et al.  Measurement of returns to scale using non-radial DEA models , 2014, Eur. J. Oper. Res..

[38]  Kaoru Tone,et al.  Decomposing technical efficiency and scale elasticity in two-stage network DEA , 2014, Eur. J. Oper. Res..

[39]  J. Maciejowski,et al.  On Polyhedral Projection and Parametric Programming , 2008 .

[40]  Rolf Färe,et al.  New directions : efficiency and productivity , 2004 .

[41]  Joseph C. Paradi,et al.  Marginal Rates and Two-dimensional Level Curves in DEA , 1998 .

[42]  Kaoru Tone,et al.  On Returns to Scale under Weight Restrictions in Data Envelopment Analysis , 2001 .

[43]  Rajiv D. Banker,et al.  Estimation of returns to scale using data envelopment analysis , 1992 .

[44]  Joe Zhu,et al.  Multiple Variable Proportionality in Data Envelopment Analysis , 2011, Oper. Res..

[45]  Hirofumi Fukuyama,et al.  Returns to scale and scale elasticity in data envelopment analysis , 2000, Eur. J. Oper. Res..