Thermoelectric properties of MOCVD-grown AlInN alloys with various compositions

Thermoelectric properties of AlInN alloys, grown by metalorganic vapor phase epitaxy (MOVPE), with In-contents (x) from 11 % up to 21.34% were characterized and analyzed at room temperature. The thermoelectric figure of merit (Z*T) values of the n-Al1-xInxN alloys were measured as high as 0.391 up to 0.532 at T = 300 K. The use of high In-content (x = 21.34%) AlInN alloys leads to significant reduction in thermal conductivity [κ = 1.62 W/(mK)] due to the increased alloy scattering, however, the optimized thermoelectric material was obtained for AlInN alloy with In-content of 17% attributed to its large power factor.

[1]  S. Denbaars,et al.  GaN-Based Integrated Lateral Thermoelectric Device for Micro-Power Generation , 2009 .

[2]  Ronald A. Arif,et al.  Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes , 2007 .

[3]  Rajendra Dahal,et al.  Thermoelectric properties of InxGa1−xN alloys , 2008 .

[4]  Yik-Khoon Ee,et al.  Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures. , 2009, Optics express.

[5]  Ronald A. Arif,et al.  Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes , 2010, DRC 2010.

[6]  M. Dresselhaus,et al.  Recent developments in thermoelectric materials , 2003 .

[7]  Ronald A. Arif,et al.  Self-consistent gain analysis of type-II ‘W’ InGaN–GaNAs quantum well lasers , 2008 .

[8]  Nelson Tansu,et al.  Analysis of InGaN-delta-InN quantum wells for light-emitting diodes , 2010 .

[9]  Ali Shakouri,et al.  Heat Transfer in Nanostructures for Solid-State Energy Conversion , 2002 .

[10]  Ronald A. Arif,et al.  Type-II InGaN-GaNAs quantum wells for lasers applications , 2008 .

[11]  J. Bowers,et al.  Cross-plane Seebeck coefficient and Lorenz number in superlattices , 2007 .

[12]  A. Balandin,et al.  Thermoelectric effects in wurtzite GaN and AlxGa1−xN alloys , 2005 .

[13]  Rajendra Dahal,et al.  Thermoelectric Properties of In0.3Ga0.7N Alloys , 2009 .

[14]  Nelson Tansu,et al.  Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers , 2010 .

[15]  Ronald A. Arif,et al.  Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime , 2009 .

[16]  Nelson Tansu,et al.  MOVPE and photoluminescence of narrow band gap (0.77 eV) InN on GaN/sapphire by pulsed growth mode , 2008 .

[17]  Nelson Tansu,et al.  Optical gain characteristics of staggered InGaN quantum wells lasers , 2010 .

[18]  Alexander A. Balandin,et al.  Thermal conduction in AlxGa1−xN alloys and thin films , 2005 .

[19]  Rajendra Dahal,et al.  InGaN/GaN multiple quantum well solar cells with long operating wavelengths , 2009 .

[20]  A. Yamamoto,et al.  Thermoelectric properties of Al1−xInxN and Al1−y−zGayInzN prepared by radio-frequency sputtering: Toward a thermoelectric power device , 2003 .

[21]  Yik-Khoon Ee,et al.  Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[22]  Ronald A. Arif,et al.  Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy , 2008 .

[23]  Mino Green,et al.  An improved hot-probe apparatus for the measurement of Seebeck coefficient , 1970 .

[24]  Jing Zhang,et al.  Characterizations of Seebeck coefficients and thermoelectric figures of merit for AlInN alloys with various In-contents , 2011 .

[25]  Yik-Khoon Ee,et al.  Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire , 2010 .

[26]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[27]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[28]  Ronald A. Arif,et al.  Optical Gain Analysis of Strain Compensated InGaN-AlGaN Quantum Well Active Regions for Lasers Emitting at 420-500 nm , 2007 .

[29]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[30]  Hongping Zhao,et al.  Design Analysis of Staggered InGaN Quantum Wells Light-Emitting Diodes at 500–540 nm , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  Thermoelectric and thermal properties of AlInN thin films prepared by reactive radio-frequency sputtering , 2004 .

[32]  D. Cahill,et al.  Thermal conductivity of a-Si:H thin films. , 1994, Physical review. B, Condensed matter.

[33]  A. Yamamoto,et al.  Thermoelectric devices using InN and Al1−xInxN thin films prepared by reactive radio-frequency sputtering , 2004 .

[34]  Yik-Khoon Ee,et al.  Enhancement of Light Extraction Efficiency of InGaN Quantum Wells LEDs Using SiO2 Microspheres , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[35]  Hisashi Yamada,et al.  Continuous-wave Operation of AlGaN-cladding-free Nonpolar m-Plane InGaN/GaN Laser Diodes , 2007 .

[36]  Pohl,et al.  Thermal conductivity of amorphous solids above the plateau. , 1987, Physical review. B, Condensed matter.

[37]  D. Cahill Erratum: “Thermal conductivity measurement from 30 to 750 K: The 3ω method” [Rev. Sci. Instrum. 61, 802 (1990)] , 2002 .

[38]  Ronald A. Arif,et al.  MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates , 2008 .

[39]  Yik-Khoon Ee,et al.  Spontaneous Emission and Characteristics of Staggered InGaN Quantum-Well Light-Emitting Diodes , 2008, IEEE Journal of Quantum Electronics.

[40]  Atsushi Yamamoto,et al.  Thermal diffusivity and thermoelectric figure of merit of Al1−xInxN prepared by reactive radio-frequency sputtering , 2003 .

[41]  Nelson Tansu,et al.  Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile , 2009 .

[42]  A. Yamamoto,et al.  Thermoelectric properties of and devices based on free-standing GaN , 2005 .

[43]  Roll-type thermoelectric devices with InN thin films , 2005 .

[44]  J. Gilchrist,et al.  Optimization of Light Extraction Efficiency of III-Nitride LEDs With Self-Assembled Colloidal-Based Microlenses , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  Yik-Khoon Ee,et al.  Self-Consistent Analysis of Strain-Compensated InGaN–AlGaN Quantum Wells for Lasers and Light-Emitting Diodes , 2009, IEEE Journal of Quantum Electronics.

[46]  Nelson Tansu,et al.  Influence of growth temperature and V/III ratio on the optical characteristics of narrow band gap (0.77 eV) InN grown on GaN/sapphire using pulsed MOVPE , 2008 .

[47]  Yik-Khoon Ee,et al.  Metalorganic Vapor Phase Epitaxy of III-Nitride Light-Emitting Diodes on Nanopatterned AGOG Sapphire Substrate by Abbreviated Growth Mode , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[48]  Yik-Khoon Ee,et al.  III-Nitride Photonics , 2010, IEEE Photonics Journal.

[49]  U. Mishra,et al.  AlGaN/GaN HEMTs-an overview of device operation and applications , 2002, Proc. IEEE.

[50]  Seungmin Lee,et al.  Heat transport in thin dielectric films , 1997 .

[51]  Jing Zhang,et al.  Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor deposition , 2010 .

[52]  Jeremy J. Baumberg,et al.  Current status of AlInN layers lattice-matched to GaN for photonics and electronics , 2007 .