Monte Carlo Tree Search for the Game of Diplomacy
暂无分享,去创建一个
[1] Csaba Szepesvári,et al. Bandit Based Monte-Carlo Planning , 2006, ECML.
[2] V. T. Rajan,et al. Bayesian Inference in Monte-Carlo Tree Search , 2010, UAI.
[3] X. Y. Croes. Tree Search Methods for Diplomacy Agents , 2016 .
[4] H. Jaap van den Herik,et al. Cross-Entropy for Monte-Carlo Tree Search , 2008, J. Int. Comput. Games Assoc..
[5] Título D-Brane,et al. D-Brane : a diplomacy playing agent for automated negotiations research , 2017 .
[6] Rina Dechter,et al. AND/OR search spaces for graphical models , 2007, Artif. Intell..
[7] David P. Helmbold,et al. All-Moves-As-First Heuristics in Monte-Carlo Go , 2009, IC-AI.
[8] Demis Hassabis,et al. Mastering the game of Go without human knowledge , 2017, Nature.
[9] Jin Wang,et al. Overview on DeepMind and Its AlphaGo Zero AI , 2018, ICBDE.
[10] Pieter Spronck,et al. Monte-Carlo Tree Search: A New Framework for Game AI , 2008, AIIDE.
[11] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[12] Simon M. Lucas,et al. A Survey of Monte Carlo Tree Search Methods , 2012, IEEE Transactions on Computational Intelligence and AI in Games.
[13] Takayuki Ito,et al. The Challenge of Negotiation in the Game of Diplomacy , 2018, AT.