Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies

[1]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[2]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[3]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[4]  Sergey I. Bozhevolnyi,et al.  Random-phase metasurfaces at optical wavelengths , 2016, Scientific Reports.

[5]  Sailing He,et al.  Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. , 2015, ACS nano.

[6]  Sailing He,et al.  Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime , 2010 .

[7]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[8]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[9]  T. Cui,et al.  Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition , 2016, Scientific Reports.

[10]  Jianqiang Gu,et al.  Highly flexible broadband terahertz metamaterial quarter‐wave plate , 2014 .

[11]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[12]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[13]  Fei Ding,et al.  Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence , 2017, Light: Science & Applications.

[14]  Erez Hasman,et al.  Photonic spin-controlled multifunctional shared-aperture antenna array , 2016, Science.

[15]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[16]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[17]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[18]  Erez Hasman,et al.  Multiple Wavefront Shaping by Metasurface Based on Mixed Random Antenna Groups , 2015 .

[19]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[20]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[21]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[22]  Qiaofeng Tan,et al.  Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity , 2013, Light: Science & Applications.

[23]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[24]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[25]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[26]  Federico Capasso,et al.  Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. , 2013, Optics letters.

[27]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[28]  Sergey I. Bozhevolnyi,et al.  Gap plasmon-based metasurfaces for total control of reflected light , 2013, Scientific Reports.

[29]  Xin Zhang,et al.  Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial , 2012, Nature.

[30]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[31]  C. H. Chu,et al.  Fundamentals and Applications of Metasurfaces , 2017 .

[32]  Lei Zhou,et al.  Ultra-broadband terahertz metamaterial absorber , 2014 .

[33]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[34]  Fei Ding,et al.  Gradient metasurfaces: a review of fundamentals and applications , 2017, Reports on progress in physics. Physical Society.

[35]  Junsuk Rho,et al.  Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices , 2017, Materials.

[36]  Sergey I. Bozhevolnyi,et al.  Beam-Size-Invariant Spectropolarimeters Using Gap-Plasmon Metasurfaces , 2017, 1704.08915.

[37]  Anders Pors,et al.  Broadband plasmonic half-wave plates in reflection. , 2013, Optics letters.

[38]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[39]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[40]  D. Werner,et al.  Hybrid Resonators and Highly Tunable Terahertz Metamaterials Enabled by Vanadium Dioxide (VO2) , 2017, Scientific Reports.

[41]  Houtong Chen,et al.  A review of metasurfaces: physics and applications , 2016, Reports on progress in physics. Physical Society.

[42]  Sergey I. Bozhevolnyi,et al.  Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons , 2014, Light: Science & Applications.

[43]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[44]  Yanxia Cui,et al.  Plasmonic and metamaterial structures as electromagnetic absorbers , 2014, 1404.5695.

[45]  P. Genevet,et al.  Holographic optical metasurfaces: a review of current progress , 2015, Reports on progress in physics. Physical Society.

[46]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[47]  H. Matsui,et al.  Mid‐infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays , 2015 .

[48]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[49]  Sergey I. Bozhevolnyi,et al.  Broadband near-infrared metamaterial absorbers utilizing highly lossy metals , 2016, Scientific Reports.

[50]  Lei Zhou,et al.  High‐Performance Bifunctional Metasurfaces in Transmission and Reflection Geometries , 2017 .

[51]  D. R. Chowdhury,et al.  Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. , 2011, Optics letters.

[52]  Sergey I. Bozhevolnyi,et al.  Plasmonic metagratings for simultaneous determination of Stokes parameters , 2015, 1609.04691.

[53]  Andrea Alù,et al.  Manipulating light polarization with ultrathin plasmonic metasurfaces , 2011 .

[54]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.