THE EFFECT OF ABSORPTION SYSTEMS ON COSMIC REIONIZATION

We use large-scale simulations to investigate the morphology of reionization during the final, overlap phase. Our method uses an efficient three-dimensional smoothing technique that takes into account the finite mean free path due to absorption systems, {lambda}{sub abs}, by only smoothing over scales R{sub s} < {lambda}{sub abs}. The large dynamic range of our calculations is necessary to resolve the neutral patches left at the end of reionization within a representative volume; we find that simulation volumes exceeding several hundred Mpc on a side are necessary in order to properly model reionization when the neutral fraction is {approx_equal} 0.01-0.3. Our results indicate a strong dependence of percolation morphology on a large and uncertain region of model parameter space. The single most important parameter is the mean free path to absorption systems, which serve as opaque barriers to ionizing radiation. If these absorption systems were as abundant as some realistic estimates indicate, the spatial structure of the overlap phase is considerably more complex than previously predicted. In view of the lack of constraints on the mean free path at the highest redshifts, current theories that do not include absorption by Lyman-limit systems, and in particular three-dimensional simulations, may underestimate the abundancemore » of neutral clouds at the end of reionization. This affects predictions for the 21 cm signal associated with reionization, interpretation of absorption features in quasar spectra at z {approx} 5-6, the connection between reionization and the local universe, and constraints on the patchiness and duration of reionization from temperature fluctuations measured in the cosmic microwave background arising from the kinetic Sunyaev-Zel'dovich effect.« less

[1]  R. Carswell,et al.  Absorption Lines in the Spectra of Quasistellar Objects , 1981 .

[2]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[3]  S. Zaroubi,et al.  Fast Large-Scale Reionization Simulations , 2008, 0809.1326.

[4]  T. Abel,et al.  Multi-dimensional cosmological radiative transfer with a Variable Eddington Tensor formalism , 2001, astro-ph/0106278.

[5]  R. Wechsler,et al.  THE IMPACT OF INHOMOGENEOUS REIONIZATION ON THE SATELLITE GALAXY POPULATION OF THE MILKY WAY , 2009, 0901.3553.

[6]  David Tytler,et al.  QSO Lyman limit absorption , 1982, Nature.

[7]  THE KINETIC SUNYAEV-ZEL'DOVICH EFFECT FROM REIONIZATION , 2005, astro-ph/0504189.

[8]  Cambridge,et al.  PHOTON-CONSERVING RADIATIVE TRANSFER AROUND POINT SOURCES IN MULTIDIMENSIONAL NUMERICAL COSMOLOGY , 1998, astro-ph/9812151.

[9]  P. Shapiro,et al.  The effect of minihaloes on cosmic reionization , 2005, astro-ph/0511623.

[10]  Photon Consumption in Minihalos during Cosmological Reionization , 2000, astro-ph/0009125.

[11]  T. Abel,et al.  Simulating reionization in numerical cosmology , 2001, astro-ph/0105181.

[12]  M. Haehnelt,et al.  Inside-out or outside-in: the topology of reionization in the photon-starved regime suggested by Lyα forest data , 2008, 0806.1524.

[13]  The nature and evolution of the highly ionized near-zones in the absorption spectra of z≃ 6 quasars , 2006, astro-ph/0607331.

[14]  Gaseous Galactic Halos and QSO Absorption Line Systems , 1996, astro-ph/9603027.

[15]  H. Trac,et al.  Comparison of reionization models: radiative transfer simulations and approximate, seminumeric models , 2010, 1003.3455.

[16]  H. Trac,et al.  Radiative Transfer Simulations of Cosmic Reionization. I. Methodology and Initial Results , 2006, astro-ph/0612406.

[17]  M. Zaldarriaga,et al.  The Growth of H II Regions During Reionization , 2004, astro-ph/0403697.

[18]  H. Trac,et al.  Cosmological H II Bubble Growth during Reionization , 2007, 0708.2425.

[19]  Photoevaporation of cosmological minihaloes during reionization , 2003, astro-ph/0307266.

[20]  L. Moscardini,et al.  The distribution of Lyman-limit absorption systems during and after reionization , 2010, 1008.0003.

[21]  J. Schaye,et al.  Keeping the Universe ionized: photoheating and the clumping factor of the high-redshift intergalactic medium , 2008, 0807.3963.

[22]  N. Gnedin Effect of Reionization on Structure Formation in the Universe , 2000, astro-ph/0002151.

[23]  Martin J. Rees,et al.  Reionization of the Inhomogeneous Universe , 1998, astro-ph/9812306.

[24]  Simulating Cosmic Reionization at Large Scales I: the Geometry of Reionization , 2005, astro-ph/0512187.

[25]  Taxing the rich: Recombinations and bubble growth during reionization , 2005, astro-ph/0505065.

[26]  R. Cen,et al.  21cmfast: a fast, seminumerical simulation of the high‐redshift 21‐cm signal , 2010, 1003.3878.

[27]  J. Bond,et al.  The Kinetic Sunyaev-Zel'dovich Effect from Radiative Transfer Simulations of Patchy Reionization , 2007 .

[28]  Peter A. R. Ade,et al.  THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 AND 218 GHz FROM THE 2008 SOUTHERN SURVEY , 2010, 1009.0847.

[29]  S. Furlanetto,et al.  Efficient Simulations of Early Structure Formation and Reionization , 2007, 0704.0946.

[30]  L. Cowie,et al.  THE EVOLUTION OF LYMAN LIMIT ABSORPTION SYSTEMS TO REDSHIFT SIX , 2010, 1007.3262.

[31]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[32]  T. Abel,et al.  A “Minihalo” Model for the Lyman Limit Absorption Systems at High Redshift , 1997, astro-ph/9712119.

[33]  N. Gnedin,et al.  Cosmic Reionization Redux , 2006, astro-ph/0603794.

[34]  G. Mellema,et al.  Dependence of the local reionization history on halo mass and environment: did Virgo reionize the Local Group? , 2007, 0705.0530.

[35]  J. Bolton,et al.  Reionization bias in high‐redshift quasar near‐zones , 2007, 0708.1788.

[36]  C. Faucher-Giguère,et al.  ON LYMAN-LIMIT SYSTEMS AND THE EVOLUTION OF THE INTERGALACTIC IONIZING BACKGROUND , 2011, 1101.1964.

[37]  M. Zaldarriaga,et al.  Quasar Proximity Zones and Patchy Reionization , 2007, astro-ph/0703667.

[38]  M. Irwin,et al.  Evolution of Lyman-limit absorption systems over the redshift range 0.40 < Z < 4.69 , 1994 .

[39]  A. Mesinger Was reionization complete by z∼ 5–6? , 2009, 0910.4161.

[40]  Matias Zaldarriaga,et al.  Simulations and Analytic Calculations of Bubble Growth during Hydrogen Reionization , 2006, astro-ph/0604177.

[41]  S. Furlanetto,et al.  The ionizing background at the end of reionization , 2008, 0809.4493.

[42]  The morphology of H ii regions during reionization , 2006, astro-ph/0610094.

[43]  U. Irvine,et al.  Fast large volume simulations of the 21-cm signal from the reionization and pre-reionization epochs , 2009, 0911.2219.

[44]  A. Loeb,et al.  Probing the epoch of reionization with Milky Way satellites , 2009, 0905.4744.

[45]  James S. Bolton,et al.  The observed ionization rate of the intergalactic medium and the ionizing emissivity at z≥ 5: evidence for a photon-starved and extended epoch of reionization , 2007 .

[46]  B. Wandelt,et al.  Adaptive ray tracing for radiative transfer around point sources , 2001, astro-ph/0111033.