STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.

Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus.

[1]  C. Tudor Analysis of Variations for Self-similar Processes: A Stochastic Calculus Approach , 2013 .

[2]  D. Nualart Fractional Brownian motion , 2006 .

[3]  Richard L. Wheeden Measure and integral , 1977 .

[4]  Á. Cartea,et al.  Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[6]  Mark M. Meerschaert,et al.  Linking fluvial bed sediment transport across scales , 2012 .

[7]  M. Meerschaert,et al.  Tempered fractional Brownian motion , 2013 .

[8]  Mark M. Meerschaert,et al.  Gaussian setting time for solute transport in fluvial systems , 2011 .

[9]  G. Rangarajan,et al.  Processes with Long-Range Correlations , 2003 .

[10]  E. Perkins,et al.  Stochastic Partial Dieren tial Equations , 2003 .

[11]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[12]  A. Davenport The spectrum of horizontal gustiness near the ground in high winds , 1961 .

[13]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[14]  Stamatis Cambanis,et al.  Stochastic and multiple Wiener integrals for Gaussian processes , 1978 .

[15]  H. Vincent Poor,et al.  Signal detection in fractional Gaussian noise , 1988, IEEE Trans. Inf. Theory.

[16]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[17]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[18]  Robert C. Dalang,et al.  A Minicourse on Stochastic Partial Differential Equations , 2008 .

[19]  V. Tikhomirov Wiener Spirals and Some Other Interesting Curves in a Hilbert Space , 1991 .

[20]  T. Gneiting,et al.  Matérn Cross-Covariance Functions for Multivariate Random Fields , 2010 .

[21]  Mark M. Meerschaert,et al.  Tempered stable Lévy motion and transient super-diffusion , 2010, J. Comput. Appl. Math..

[22]  Patrick Cheridito,et al.  Gaussian moving averages, semimartingales and option pricing , 2004 .

[23]  S. C. Lim,et al.  Weyl and Riemann–Liouville multifractional Ornstein–Uhlenbeck processes , 2007 .

[24]  J. Fletcher Distributions , 2008, BMJ : British Medical Journal.

[25]  Hui-Hsiung Kuo,et al.  White noise distribution theory , 1996 .

[26]  David A. Benson,et al.  On Using Random Walks to Solve the Space-Fractional Advection-Dispersion Equations , 2006 .

[27]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[28]  Petra Koenig Foundations Of The Prediction Process , 2016 .

[29]  Fredrik T. Rantakyrö,et al.  ALMA Memo No. 497 ANALYSIS OF WIND DATA GATHERED AT CHAJNANTOR , 2004 .

[30]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[31]  Mark M. Meerschaert,et al.  Tempered stable laws as random walk limits , 2010, 1007.3474.

[32]  Mingzhou Ding,et al.  Processes with long-range correlations : theory and applications , 2003 .

[33]  Ahsan Kareem,et al.  ARMA systems in wind engineering , 1990 .

[34]  N. U. Prabhu,et al.  Stochastic Processes and Their Applications , 1999 .

[35]  M. Jolis The Wiener integral with respect to second order processes with stationary increments , 2010 .

[36]  Murad S. Taqqu,et al.  A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy-Tailed Distributions , 1998 .

[37]  H. Weinert Reproducing kernel Hilbert spaces: Applications in statistical signal processing , 1982 .

[38]  M. Meerschaert,et al.  Tempered anomalous diffusion in heterogeneous systems , 2008 .

[39]  M. Stein,et al.  A Bayesian analysis of kriging , 1993 .

[40]  Mark A. McComb A Practical Guide to Heavy Tails , 2000, Technometrics.

[41]  C. Tudor Inner product spaces of integrands associated to subfractional Brownian motion , 2008 .

[42]  J. Rosínski Tempering stable processes , 2007 .

[43]  David J. Norton,et al.  Mobile Offshore Platform Wind Loads , 1981 .

[44]  R. Adler,et al.  A practical guide to heavy tails: statistical techniques and applications , 1998 .

[45]  M. Taqqu,et al.  Integration questions related to fractional Brownian motion , 2000 .

[46]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[47]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[48]  Alan E. Gelfand,et al.  On smoothness properties of spatial processes , 2003 .

[49]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .