Deformability of poly(amidoamine) dendrimers

Abstract.Experimental data indicates that poly(amidoamine) (PAMAM) dendrimers flatten when in contact with a substrate, i.e. they are no longer spherical, but resemble flat disks. In order to better understand the deformation behavior of these branched polymers, a series of atomistic molecular dynamics simulations is performed. The resulting flattened dendrimer conformations are compared to atomic force microscopy (AFM) images of individual dendrimers at air/mica and water/mica interfaces. The ability of the polymers to deform is investigated as a function of dendrimer generation (2-5) and the required energies are calculated. Our modeling results show good agreement with the experimental AFM images, namely that dendrimers are highly flexible and capable of forming multiple interaction sites between most of their branch ends and the substrate. The deformation energy scales with dendrimer generation and does not indicate an increase in stiffness between generations 2 and 5 due to steric effects.

[1]  O. Mazda,et al.  Effective suicide gene therapy in vivo by EBV-based plasmid vector coupled with polyamidoamine dendrimer , 2000, Gene Therapy.

[2]  Zhengxiu Chen,et al.  Monte Carlo Simulations of Star-Burst Dendrimers , 1996 .

[3]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[4]  L. Klushin,et al.  Monte Carlo studies of dendrimer macromolecules , 1993 .

[5]  V. Tsukruk Dendritic Macromolecules at Interfaces , 1998 .

[6]  H. Abruña,et al.  Redox-Active Ferrocenyl Dendrimers: Thermodynamics and Kinetics of Adsorption, In-Situ Electrochemical Quartz Crystal Microbalance Study of the Redox Process and Tapping Mode AFM Imaging , 1997 .

[7]  F. Fraternali,et al.  A Molecular Dynamics Study of the First Five Generations of Poly(Propylene Imine) Dendrimers Modified with N‐tBoc‐L‐Phenylalanine , 1998 .

[8]  Donald A. Tomalia,et al.  Effect of solvent quality on the molecular dimensions of PAMAM dendrimers , 1999 .

[9]  L. A. Baker,et al.  Structural Distortion of Dendrimers on Gold Surfaces: A Tapping-Mode AFM Investigation , 1998 .

[10]  F. Szoka,et al.  Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. , 1993, Bioconjugate chemistry.

[11]  Charles S. Johnson,et al.  Cascade polymers. 35. pH dependence of hydrodynamic radii of acid-terminated dendrimers , 1993 .

[12]  Mona C. Wells,et al.  Interactions between Organized, Surface-Confined Monolayers and Vapor-Phase Probe Molecules. 10. Preparation and Properties of Chemically Sensitive Dendrimer Surfaces , 1996 .

[13]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[14]  M. Mansfield Surface adsorption of model dendrimers , 1996 .

[15]  Steven E. Keinath,et al.  Rheology of Dendrimers. I. Newtonian Flow Behavior of Medium and Highly Concentrated Solutions of Polyamidoamine (PAMAM) Dendrimers in Ethylenediamine (EDA) Solvent , 1998 .

[16]  M. Muthukumar,et al.  Configurational characteristics and scaling behavior of starburst molecules: a computational study , 1990 .

[17]  Richard M. Crooks,et al.  Preparation and characterization of dendrimer monolayers and dendrimer - Alkanethiol mixed monolayers adsorbed to gold , 1998 .

[18]  G. Flynn,et al.  AFM Studies of High-Generation PAMAM Dendrimers at the Liquid/Solid Interface , 2002 .

[19]  William A. Goddard,et al.  Starburst dendrimers. 5. Molecular shape control , 1989 .

[20]  W. Goddard,et al.  Dynamics of Bengal Rose Encapsulated in the Meijer Dendrimer Box , 1997 .

[21]  Kell Mortensen,et al.  The Molecular Characteristics of Poly(propyleneimine) Dendrimers As Studied with Small-Angle Neutron Scattering, Viscosimetry, and Molecular Dynamics , 1998 .

[22]  J. Baker,et al.  Visualization and Characterization of Poly(amidoamine) Dendrimers by Atomic Force Microscopy , 2000 .

[23]  V. Tsukruk,et al.  Self-Assembled Multilayer Films from Dendrimers , 1997 .

[24]  Donald A. Tomalia,et al.  Visualization of Dendrimer Molecules by Transmission Electron Microscopy (TEM): Staining Methods and Cryo-TEM of Vitrified Solutions , 1998 .

[25]  L. Klushin,et al.  Intrinsic viscosity of model Starburst dendrimers , 1992 .

[26]  Donald A. Tomalia,et al.  A SAXS study of the internal structure of dendritic polymer systems , 1997 .

[27]  Alexander D. MacKerell,et al.  CHARMM: The Energy Function and Its Parameterization , 2002 .

[28]  V. Tsukruk,et al.  On the structure of polyamidoamine dendrimer monolayers , 1998 .

[29]  B. Orr,et al.  Tapping Mode Atomic Force Microscopy Investigation of Poly(amidoamine) Dendrimers: Effects of Substrate and pH on Dendrimer Deformation , 2001 .

[30]  J. Baker,et al.  Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Muthukumar,et al.  Tuning the Density Profile of Dendritic Polyelectrolytes , 1998 .

[32]  R. Duncan,et al.  Dendrimer-platinate: a novel approach to cancer chemotherapy. , 1999, Anti-cancer drugs.

[33]  G. Grest,et al.  Molecular Dynamics Study of Dendrimer Molecules in Solvents of Varying Quality , 1996 .

[34]  R. Ivkov,et al.  Size Invariance of Polyelectrolyte Dendrimers , 2000 .

[35]  Michael Rubinstein,et al.  A Self-Consistent Mean Field Model of a Starburst Dendrimer: Dense Core vs Dense Shell , 1996 .

[36]  J. Baker,et al.  Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. , 1996, Nucleic acids research.

[37]  D. Tomalia,et al.  Characterization of Starburst Dendrimers by EPR. 4. Mn(II) as a Probe of Interphase Properties , 1996 .

[38]  P. Gennes,et al.  Statistics of « starburst » polymers , 1983 .

[39]  M. Borkovec,et al.  Acid-base properties of poly(propylene imine)dendrimers , 1998 .

[40]  E. W. Meijer,et al.  About Dendrimers: Structure, Physical Properties, and Applications. , 1999, Chemical reviews.

[41]  Brian D. Athey,et al.  Structural Molecular Dynamics Studies on Polyamidoamine Dendrimers for a Therapeutic Application: Effects of pH and Generation , 2002 .

[42]  Bradford G. Orr,et al.  Tapping Mode Atomic Force Microscopy Investigation of Poly(amidoamine) Core−Shell Tecto(dendrimers) Using Carbon Nanoprobes , 2002 .

[43]  S. Lifson,et al.  Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C:O.cntdot..cntdot..cntdot.H- hydrogen bonds , 1979 .

[44]  M. Mansfield Monte Carlo Studies of Dendrimers. Additional Results for the Diamond Lattice Model , 2000 .

[45]  C. Schengrund,et al.  Oligosaccharide-derivatized dendrimers: defined multivalent inhibitors of the adherence of the cholera toxin B subunit and the heat labile enterotoxin of E. coli to GM1 , 2004, Glycoconjugate Journal.

[46]  I. Majoros,et al.  Acetylation of Poly(amidoamine) Dendrimers , 2003 .

[47]  Thommey P. Thomas,et al.  Design and Function of a Dendrimer-Based Therapeutic Nanodevice Targeted to Tumor Cells Through the Folate Receptor , 2002, Pharmaceutical Research.