3-D prestack migration of common-azimuth data

In principle, downward continuation of 3-D prestack data should be carried out in the 5-D space of full 3-D prestack geometry (recording time, source surface location, and receiver surface location), even when the data sets to be migrated have fewer dimensions, as in the case of common‐azimuth data sets that are only four dimensional. This increase in dimensionality of the computational space causes a severe increase in the amount of computations required for migrating the data. Unless this computational efficiency issue is solved, 3-D prestack migration methods based on downward continuation cannot compete with Kirchhoff methods. We address this problem by presenting a method for downward continuing common‐azimuth data in the original 4-D space of the common‐azimuth data geometry. The method is based on a new common‐azimuth downward‐continuation operator derived by a stationary‐phase approximation of the full 3-D prestack downward‐continuation operator expressed in the frequency‐wavenumber domain. Althou...