Optimal Higher Order Delaunay Triangulations of Polygons

This paper presents an algorithm to triangulate polygons optimally using order-k Delaunay triangulations, for a number of quality measures. The algorithm uses properties of higher order Delaunay triangulations to improve the O(n3) running time required for normal triangulations to O(k2n log k + kn log n) expected time, where n is the number of vertices of the polygon. An extension to polygons with points inside is also presented, allowing to compute an optimal triangulation of a polygon with h ≥ 1 components inside in O(kn log n) + O(k)h+2n expected time. Furthermore, through experimental results we show that, in practice, it can be used to triangulate point sets optimally for small values of k. This represents the first practical result on optimization of higher order Delaunay triangulations for k > 1.

[1]  David Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[2]  Subhash Suri,et al.  A pedestrian approach to ray shooting: shoot a ray, take a walk , 1993, SODA '93.

[3]  G. Klincsek Minimal Triangulations of Polygonal Domains , 1980 .

[4]  Marc J. van Kreveld,et al.  Towards a Definition of Higher Order Constrained Delaunay Triangulations , 2009, CCCG.

[5]  Andrzej Lingas,et al.  Fast algorithms for greedy triangulation , 1992, BIT Comput. Sci. Sect..

[6]  David Eppstein,et al.  Edge insertion for optimal triangulations , 1993, Discret. Comput. Geom..

[7]  Christos Levcopoulos,et al.  The greedy triangulation can be computed from the Delaunay triangulation in linear time , 1999, Comput. Geom..

[8]  Tiow Seng Tan,et al.  A Quadratic Time Algorithm for the Minimax Length Triangulation , 1993, SIAM J. Comput..

[9]  J. Mark Keil,et al.  Algorithms for optimal area triangulations of a convex polygon , 2006, Comput. Geom..

[10]  Alexander Wolff,et al.  Constructing interference-minimal networks , 2005, EuroCG.

[11]  Günter Rote,et al.  Minimum-weight triangulation is NP-hard , 2006, JACM.

[12]  Leila De Floriani,et al.  Delaunay-based representation of surfaces defined over arbitrarily shaped domains , 1985, Comput. Vis. Graph. Image Process..

[13]  Marian Neamtu,et al.  Delaunay configurations and multivariate splines: A generalization of a result of B. N. Delaunay , 2007 .

[14]  Maarten Löffler,et al.  Optimization for First Order Delaunay Triangulations , 2007, WADS.

[15]  Timothy J. Baker,et al.  A Comparison Of Triangle Quality Measures , 2001, IMR.

[16]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[17]  Joachim Gudmundsson,et al.  Higher order Delaunay triangulations , 2000, Comput. Geom..

[18]  Maarten Löffler,et al.  Generating realistic terrains with higher-order Delaunay triangulations , 2005, Comput. Geom..

[19]  Joachim Gudmundsson,et al.  Constrained higher order Delaunay triangulations , 2005, Comput. Geom..

[20]  L. Paul Chew,et al.  Constrained Delaunay triangulations , 1987, SCG '87.

[21]  Goos Kant,et al.  Augmenting Outerplanar Graphs , 1996, J. Algorithms.