Network Flow Formulation for Cooperative Peer-to-Peer Refueling Strategies

The problem of a general peer-to-peer refueling strategy for satellites in a circular constellation is addressed. The proposed cooperative egalitarian peer-to-peer strategy allows the satellites participating in a refueling transaction to engage in a cooperative rendezvous, that is, both satellites engaging in a fuel exchange may be active. Furthermore, the active satellites are allowed to interchange their orbital positions during their respective return trips. A mathematical framework to solve this general refueling problem for a large number of satellites is proposed using ideas from network flow theory. The methodology determines the optimal set of maneuvers that achieve fuel-sufficiency for all satellites, while expending the minimum possible fuel during the ensuing orbital transfers. With the help of numerical examples it is shown that the proposed cooperative egalitarian peer-to-peer strategy is the best amongst all known peer-to-peer refueling alternatives to date.

[1]  Michael G. Spencer DEVELOPMENT OF A SERVICING SATELLITE SIMULATOR , 2001 .

[2]  Frits C. R. Spieksma,et al.  On the Computational Complexity of Peer-to-Peer Satellite Refueling Strategies , 2012, INFOR Inf. Syst. Oper. Res..

[3]  Michelle E. McVey Valuation techniques for complex space systems : an analysis of a potential satellite servicing market , 2003 .

[4]  G. Visentin,et al.  On-Orbit Servicing system architectures for GEO and MEO constellations , 2006 .

[5]  Panagiotis Tsiotras,et al.  Asynchronous optimal mixed P2P satellite refueling strategies , 2006 .

[6]  Nikolai Anfimov MIR: The Record-Holding Space Station , 2003 .

[7]  Charles Reynerson Spacecraft Modular Architecture Design for on-orbit servicing , 1999 .

[8]  Richard T. Howard,et al.  Orbital Express Advanced Video Guidance Sensor: Ground Testing, Flight Results and Comparisons , 2008 .

[9]  Richard T. Howard,et al.  Orbital Express AVGS Validation and Calibration for Automated Rendezvous , 2008 .

[10]  Eric K. Hall,et al.  GPS STRUCTURAL MODIFICATIONS FOR ON-ORBIT SERVICING , 1999 .

[11]  Haijun Shen Optimal scheduling for satellite refuelling in circular orbits , 2003 .

[12]  Neil Dipprey,et al.  Orbital Express Propellant Resupply Servicing , 2003 .

[13]  Alexandros Salazar,et al.  A HIGH-LEVEL FRAMEWORK FOR THE AUTONOMOUS REFUELING OF SATELLITE CONSTELLATIONS , 2007 .

[14]  Daniel E. Hastings,et al.  Flexibility and the value of on-orbit servicing: New customer-centric perspective , 2003 .

[15]  Panagiotis Tsiotras,et al.  Hohmann-Hohmann and Hohmann-Phasing Cooperative Rendezvous Maneuvers , 2009 .

[16]  Panagiotis Tsiotras,et al.  Comparison Between Peer-to-Peer and Single-Spacecraft Refueling Strategies for Spacecraft in Circular Orbits , 2005 .

[17]  Panagiotis Tsiotras,et al.  Peer-to-Peer Refueling for Circular Satellite Constellations , 2005 .

[18]  Michael Garrison,et al.  On-orbit servicing technologoies at Moog Inc. - Past, present and future , 2000 .

[19]  B. R. McCullar Solar Maximum Repair Mission , 1984, Other Conferences.

[20]  Charles F. Lillie,et al.  On -Orbit Servicing for Future Space Observatories , 2005 .

[21]  Daniel E. Hastings,et al.  On-Orbit Servicing: A New Value Proposition for Satellite Design and Operation , 2007 .

[22]  Andrew Turner Cost-effective spacecraft dependent upon frequent non-intrusive servicing , 2001 .

[23]  Guo-Jin Tang,et al.  Hybrid planning for LEO long-duration multi-spacecraft rendezvous mission , 2012 .

[24]  Charles M. Reynerson SPACECRAFT SERVICING - FIRST ORDER MODEL FOR FEASIBILITY AND COST EFFECTIVENESS , 2001 .

[25]  Wendell Chun,et al.  SATELLITE SERVICING AND SPACE LOGISTICS , 2000 .

[26]  Panagiotis Tsiotras,et al.  Optimal Scheduling for Servicing Multiple Satellites in a Circular Constellation , 2002 .

[27]  Michael E. Polites,et al.  An Assessment of the Technology of Automated Rendezvous and Capture in Space , 1998 .

[28]  R.T. Howard,et al.  Orbital Express Advanced Video Guidance Sensor , 2008, 2008 IEEE Aerospace Conference.

[29]  Daniel E. Hastings,et al.  Catching the Wave: A Unique Opportunity for the Development of an On-Orbit Satellite Servicing Infrastructure , 2004 .

[30]  Panagiotis Tsiotras,et al.  Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions , 2003 .

[31]  Panagiotis Tsiotras,et al.  AAS 07-150 A GREEDY RANDOM ADAPTIVE SEARCH PROCEDURE FOR OPTIMAL SCHEDULING OF P 2 P SATELLITE REFUELING , 2007 .

[32]  Norman Fitz-Coy,et al.  HETEROGENEOUS EXPERT ROBOTS FOR ON-ORBIT SERVICING: A NEW PARADIGM , 2005 .

[33]  Robert Bell,et al.  HARDWARE-IN-THE LOOP TESTS OF AN AUTONOMOUS GN&C SYSTEM FOR ON-ORBIT SERVICING * , 2003 .

[34]  Panagiotis Tsiotras,et al.  Egalitarian Peer-to-Peer Satellite Refueling Strategy , 2008 .

[35]  David L. Akin,et al.  MORPHbots: Lightweight Modular Self-Reconfigurable Robotics for Space Assembly, Inspection, and Servicing , 2006 .

[36]  Daniel E. Hastings,et al.  Evaluation of the Value of the Flexibility Offered by On-orbit Servicing: Case of Satellite Upgrade , 2003 .

[37]  Stuart Kramer,et al.  Analysis and preliminary design of on-orbit servicing architectures for the GPS constellation , 1999 .

[38]  Panagiotis Tsiotras,et al.  Optimal Two-Impulse Rendezvous Between Two Circular Orbits Using Multiple-Revolution Lambert's Solutions , 2002 .

[39]  K. Alfriend,et al.  Optimal Servicing of Geosynchronous Satellites , 2002 .

[40]  Xu Bo,et al.  Research on constellation refueling based on formation flying , 2011 .

[41]  M. Vigil,et al.  Projected technology needs for an operational space based laser system , 2001 .

[42]  Panagiotis Tsiotras,et al.  A Cooperative P2P Refueling Strategy for Circular Satellite Constellations , 2008 .

[43]  Frederick Tasker,et al.  Managing Contact Dynamics for Orbital Robotic Servicing Missions , 2008 .

[44]  C. Kosmas,et al.  On-Orbit-Servicing by "HERMES On-Orbit-Servicing System", Policy Robust Planning , 2006 .

[45]  Donald M. Waltz On-Orbit Servicing of Space Systems , 1993 .