Liquid, phenylazide-end-capped copolymers of epsilon-caprolactone and trimethylene carbonate: preparation, photocuring characteristics, and surface layering.

Photoreactive phenylazide-end-capped liquid copolymers were prepared by ring-opening copolymerization of epsilon-caprolactone (CL) and trimethylene carbonate (TMC) at an equimolar monomer feed ratio in the presence of a polyol, namely, a low-molecular-weight alcohol (di-, tri-, and tetraol) or poly(ethylene glycol) (PEG) as an initiator and tin(II) 2-ethylhexanoate as a catalyst, followed subsequently by phenylazide derivatization at their hydroxyl terminus. These tri- and tetrabranched liquid copolymers (precursors) with a molecular weight from approximately 2500 to 7000 g/mol were cross-linked to yield insoluble solids by ultraviolet (UV) light irradiation. The photocuring rate increased with increasing functionality of phenylazide and UV intensity and decreasing thickness of the liquid film of precursors. The photo-cross-linkability of phenylazide-derivatized liquid copolymers was found to be higher than that of the corresponding coumarin-derivatized liquid copolymers. Poly(lactide) (PLA) films surface-layered with photocured copolymers were prepared by coating surfaces with phenylazide-derivatized copolymers and their subsequent photoirradiation. Endothelial cells adhered well on the nontreated PLA and low-molecular-weight alcohol-based copolymer-layered and photocured films. Little cell adhesion was observed on the hydrolytically surface-eroded PLA film and the PEG-based copolymer-layered film. When a phenylazide-derivatized hexapeptide with the cell-adhesion tripeptidyl sequence, Arg-Gly-Asp (RGD), common to cell adhesive proteins, was photoimmobilized on these surfaces, the surfaces became cell adhesive. Microarchitectured surfaces, which were prepared by sequential procedures of surface coating and photocuring using a photomask with lattice windows, produced regionally differentiated cell adhesiveness.