Relaxed constitutive relations for phase transforming materials

In this paper, we propose relaxed constitutive relations which model the effective behavior of some materials that undergo the martensitic phase transformation and consequently display fine scale microstructure.

[1]  John M. Ball,et al.  Regularity of quasiconvex envelopes , 2000 .

[2]  V. Sverák Lower-Semicontinuity of Variational Integrals and Compensated Compactness , 1995 .

[3]  K. Bhattacharya,et al.  Relaxation of some multi-well problems , 2001 .

[4]  Zhang,et al.  Oxygen ordering and the orthorhombic-to-tetragonal phase transition in YBa2Cu , 1987, Physical review. B, Condensed matter.

[5]  Mitchell Luskin,et al.  The Simply Laminated Microstructure in Martensitic Crystals that Undergo a Cubic‐to‐Orthorhombic Phase Transformation , 1999 .

[6]  Pablo Pedregal,et al.  Characterizations of young measures generated by gradients , 1991 .

[7]  E. Subbarao,et al.  Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400°C , 1969 .

[8]  R. James,et al.  A theory of thin films of martensitic materials with applications to microactuators , 1999 .

[9]  K. Bhattacharya Self-accommodation in martensite , 1992 .

[10]  Kaushik Bhattacharya,et al.  Wedge-like microstructure in martensites , 1991 .

[11]  K. Shimizu,et al.  Morphology and Crystallography of Thermoelastic γ' Cu-Al-Ni Martensite , 1969 .

[12]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[13]  N. Simha Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zirconia , 1997 .

[14]  Robert V. Kohn,et al.  The relaxation of a double-well energy , 1991 .

[15]  S. Kojima,et al.  Measurement of elastic constants , 1983 .

[16]  K. Bhattacharya,et al.  Uniqueness and stability of the simply laminated microstructure for martensitic crystals that undergo a cubic to orthorhombic phase transformation , 1998 .

[17]  T. Shield,et al.  Symmetry and microstructure in martensites , 1998 .

[18]  David Kinderlehrer,et al.  Equilibrium configurations of crystals , 1988 .

[19]  C. M. Wayman,et al.  Electron microscopy of internally faulted Cu-Zn-Al martensite , 1977 .

[20]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[21]  Kevin F. Hane Microstructures in thermoelastic martensites , 1998 .

[22]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[23]  J. Ericksen,et al.  Constitutive theory for some constrained elastic crystals , 1986 .

[24]  K. Hane Bulk and thin film microstructures in untwinned martensites , 1999 .

[25]  Elastic constants of the monoclinic 18R martensite of a CuZnAl alloy , 1993 .

[26]  Y. Shu,et al.  Heterogeneous Thin Films of Martensitic Materials , 2000 .

[27]  J. Ericksen,et al.  Some phase transitions in crystals , 1980 .

[28]  William M. Robertson,et al.  Temperature Dependence of the Elastic Moduli of Monoclinic Zirconia , 1991 .

[29]  J. Krumhansl,et al.  Twin Boundaries in Ferroelastic Media without Interface Dislocations , 1984 .

[30]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[31]  V. P. Smyshlyaev,et al.  On the relation of a three-well energy , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  J. Ball A version of the fundamental theorem for young measures , 1989 .

[33]  S. Biswas,et al.  Effect of anisotropy on dislocations at YBa2Cu3O7-x-PrBa2Cu3O7-x epitaxial interfaces , 1994 .

[34]  A. Raoult,et al.  The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity , 1995 .

[35]  A. Pipkin,et al.  ELASTIC MATERIALS WITH TWO PREFERRED STATES , 1991 .