Biochemical and ecophysiological responses to manganese stress by ectomycorrhizal fungus Pisolithus tinctorius and in association with Eucalyptus grandis

[1]  C. Foy Physiological Effects of Hydrogen, Aluminum, and Manganese Toxicities in Acid Soil , 2015 .

[2]  M. Rékási,et al.  Factors determining Cd, Co, Cr, Cu, Ni, Mn, Pb and Zn mobility in uncontaminated arable and forest surface soils in Hungary , 2015, Environmental Earth Sciences.

[3]  Zhenguo Shen,et al.  Growth and photosynthetic responses of ectomycorrhizal pine seedlings exposed to elevated Cu in soils , 2015, Mycorrhiza.

[4]  Xing Fan,et al.  Effect of exogenous salicylic acid on manganese toxicity, mineral nutrients translocation and antioxidative system in polish wheat (Triticum polonicum L.) , 2015, Acta Physiologiae Plantarum.

[5]  C. Peng,et al.  Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens. , 2014, Plant, cell & environment.

[6]  M. Ducousso,et al.  Ectomycorrhizal Pisolithus albus inoculation of Acacia spirorbis and Eucalyptus globulus grown in ultramafic topsoil enhances plant growth and mineral nutrition while limits metal uptake. , 2014, Journal of plant physiology.

[7]  N. Rajakaruna,et al.  Heavy Metal Tolerance , 2013 .

[8]  M. Aschner,et al.  Manganese Neurotoxicity: a Focus on Glutamate Transporters , 2013, Annals of Occupational and Environmental Medicine.

[9]  T. E. Cloete,et al.  Iron ore weathering potentials of ectomycorrhizal plants , 2012, Mycorrhiza.

[10]  S. Arya,et al.  Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.). , 2011, Journal of environmental biology.

[11]  H. Marschner,et al.  Marschner's Mineral Nutrition of Higher Plants , 2011 .

[12]  Lintong Yang,et al.  Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings , 2010, BMC Plant Biology.

[13]  M. Malnoy,et al.  Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora , 2010, BMC Plant Biology.

[14]  Cong-Zhao Zhou,et al.  Structures of yeast glutathione‐S‐transferase Gtt2 reveal a new catalytic type of GST family , 2009, EMBO reports.

[15]  Brice Enjalbert,et al.  Glucose promotes stress resistance in the fungal pathogen Candida albicans. , 2009, Molecular biology of the cell.

[16]  Motoyuki Shimizu,et al.  The Glutathione System of Aspergillus nidulans Involves a Fungus-specific Glutathione S-Transferase* , 2009, Journal of Biological Chemistry.

[17]  G. Moraes,et al.  Effects of phenol in antioxidant metabolism in matrinxã, Brycon amazonicus (Teleostei; Characidae). , 2008, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[18]  B. Lahner,et al.  The Effect of Iron on the Primary Root Elongation of Arabidopsis during Phosphate Deficiency1[W][OA] , 2008, Plant Physiology.

[19]  A. Shapcott,et al.  The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses , 2007, Photosynthesis Research.

[20]  H. Korpelainen,et al.  Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. , 2007, Chemosphere.

[21]  R. Finlay Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. , 2007, Journal of experimental botany.

[22]  R. Tavares,et al.  Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius , 2007, Mycorrhiza.

[23]  V. Page,et al.  Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. , 2006, The New phytologist.

[24]  T. Lehto Mycorrhizas and drought resistance of Picea sitchensis (Bong.) Carr. , 2006 .

[25]  V. Page,et al.  Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. , 2005, Annals of botany.

[26]  G. Gadd,et al.  Role of Oxalic Acid Overexcretion in Transformations of Toxic Metal Minerals by Beauveria caledonica , 2005, Applied and Environmental Microbiology.

[27]  N. Hue,et al.  Manganese Solubility and Phytotoxicity Affected by Soil Moisture, Oxygen Levels, and Green Manure Additions , 2004 .

[28]  E. Cardoso,et al.  Manganese Toxicity in Mycorrhizal and Phosphorus-Fertilized Soybean Plants , 2004 .

[29]  J. Vangronsveld,et al.  A zinc-adapted fungus protects pines from zinc stress. , 2004, The New phytologist.

[30]  S. Power,et al.  Effects of cadmium on growth and glucose utilisation of ectomycorrhizal fungi in vitro , 2003, Mycorrhiza.

[31]  W. Horst,et al.  APOPLASTIC PEROXIDASES AND ASCORBATE ARE INVOLVED IN MANGANESE TOXICITY AND TOLERANCE OF VIGNA UNGUICULATA , 2003 .

[32]  A. Polle,et al.  Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. , 2002, FEMS microbiology ecology.

[33]  M. Gryndler,et al.  Magnesium ions alleviate the negative effect of manganese on Glomus claroideum BEG23 , 2002, Mycorrhiza.

[34]  A. de Varennes,et al.  MANGANESE TOXICITY IN THREE SPECIES OF ANNUAL MEDICS , 2001 .

[35]  J. Vangronsveld,et al.  Ectomycorrhizal protection of Pinus sylvestris against copper toxicity , 2001 .

[36]  C. Leyval,et al.  Metal-binding capacity of arbuscular mycorrhizal mycelium , 2000, Plant and Soil.

[37]  D. Blaudez,et al.  Differential responses of ectomycorrhizal fungi to heavy metals in vitro , 2000 .

[38]  I. Mannazzu,et al.  Vanadate and copper induce overlapping oxidative stress responses in the vanadate-tolerant yeast Hansenula polymorpha. , 2000, Biochimica et biophysica acta.

[39]  M. Angelova,et al.  Comparison of antioxidant enzyme biosynthesis by free and immobilized Aspergillus niger cells* , 2000, Enzyme and microbial technology.

[40]  C. Grant,et al.  Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. , 1998, Biochemical and biophysical research communications.

[41]  M. Tabatabai Handbook of Reference Methods for Plant Analysis , 1998 .

[42]  I. Kottke,et al.  Xerocomus badius – Picea abies, an ectomycorrhiza of high activity and element storage capacity in acidic soil , 1998, Mycorrhiza.

[43]  T. Grove,et al.  Working with Mycorrhizas in Forestry and Agriculture , 1996 .

[44]  J. Tobin,et al.  Fungal melanins and their interactions with metals. , 1996, Enzyme and microbial technology.

[45]  R. Strasser,et al.  Measuring fast fluorescence transients to address environmental questions: the JIP-test , 1995 .

[46]  D. Parker,et al.  Chemical Equilibrium Models: Applications to Plant Nutrition Research , 1995 .

[47]  P. C. Tam,et al.  Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius , 1995, Mycorrhiza.

[48]  V. Römheld,et al.  Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize , 1994, Mycorrhiza.

[49]  C. Brunold,et al.  Heavy metal binding by mycorrhizal fungi , 1994 .

[50]  G. Gadd Interactions of fungip with toxic metals , 1993 .

[51]  J. Colpaert,et al.  The effects of cadmium on ectomycorrhizal Pinus sylvestris L. , 1993 .

[52]  G. Bethlenfalvay,et al.  Manganese toxicity alleviated by mycorrhizae in soybean , 1989 .

[53]  Melanie D. Jones,et al.  THE EFFECT OF MYCORRHIZAL INFECTION ON THE RESPONSE OF BETULA PAPYRIFERA TO NICKEL AND COPPER , 1986 .

[54]  Manuela Giovannetti,et al.  AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS , 1980 .

[55]  R. Clárk Characterization of phosphatase of intact maize roots. , 1975, Journal of agricultural and food chemistry.

[56]  W B Jakoby,et al.  Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. , 1974, The Journal of biological chemistry.

[57]  J. M. Phillips,et al.  Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. , 1970 .

[58]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[59]  A. Ivanov,et al.  MANGANESE AS ESSENTIAL AND TOXIC ELEMENT FOR PLANTS: TRANSPORT, ACCUMULATION AND RESISTANCE MECHANISMS , 2010 .

[60]  J. Feijó,et al.  A pH signaling mechanism involved in the spatial distribution of calcium and anion fluxes in ectomycorrhizal roots. , 2009, The New phytologist.

[61]  D. Blaudez,et al.  Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. , 2006, FEMS microbiology letters.

[62]  R. Strasser,et al.  Analysis of the Chlorophyll a Fluorescence Transient , 2004 .

[63]  Short N Ote Effects of cadmium on growth and glucose utilisation of ectomycorrhizal fungi in vitro , 2003 .

[64]  E. Cardoso,et al.  Mycorrhizal effectiveness and manganese toxicity in soybean as affected by soil type and endophyte , 2003 .

[65]  J. Hall Cellular mechanisms for heavy metal detoxification and tolerance. , 2002, Journal of experimental botany.

[66]  R. Strasser,et al.  The fluorescence transient as a tool to characterize and screen photosynthetic samples , 2000 .

[67]  T. Koike,et al.  Comparison of photosynthetic responses to manganese toxicity of deciduous broad-leaved trees in northern Japan. , 1997, Environmental pollution.

[68]  S. Goldberg,et al.  Chemical equilibrium and reaction models , 1995 .

[69]  A. Varma,et al.  Mycorrhiza , 1995, Springer Berlin Heidelberg.

[70]  C. Fanelli,et al.  Different Interactions of Fungi with Toxic Metals , 1994 .

[71]  J. Garbaye,et al.  The effects of ectomycorrhizal status on carbon dioxide assimilation capacity, water-use efficiency and response to transplanting in seedlings of Pseudotsuga menziesii (Mirb) Franco. , 1990 .

[72]  S. Long,et al.  Chlorophyll Fluorescence as a Probe of the Photosynthetic Competence of Leaves in the Field: A Review of Current Instrumentation , 1989 .

[73]  R. Nable,et al.  Physiological functions of manganese in plants , 1988 .

[74]  W. Horst The Physiology of Manganese Toxicity , 1988 .

[75]  E. Paul,et al.  Comparisons between P-fertilized and mycorrhizal plants , 1986 .

[76]  D. Wilkins,et al.  Zinc tolerance of mycorrhizal Betula , 1985 .

[77]  D. Marx The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria , 1969 .

[78]  C. I. Rich Soil Chemical Analysis , 1958 .