Generalised holonomies and K(E9)

Abstract The involutory subalgebra K($$ \mathfrak{e} $$ e 9) of the affine Kac-Moody algebra $$ \mathfrak{e} $$ e 9 was recently shown to admit an infinite sequence of unfaithful representations of ever increasing dimensions [1]. We revisit these representations and describe their associated ideals in more detail, with particular emphasis on two chiral versions that can be constructed for each such representation. For every such unfaithful representation we show that the action of K($$ \mathfrak{e} $$ e 9) decomposes into a direct sum of two mutually commuting (‘chiral’ and ‘anti-chiral’) parabolic algebras with Levi subalgebra $$ \mathfrak{so} $$ so (16)+ ⊕ $$ \mathfrak{so} $$ so (16)−. We also spell out the consistency conditions for uplifting such representations to unfaithful representations of K($$ \mathfrak{e} $$ e 10). From these results it is evident that the holonomy groups so far discussed in the literature are mere shadows (in a Platonic sense) of a much larger structure.

[1]  M. Duff,et al.  Multi-membrane solutions of D = 11 supergravity , 1991 .

[2]  T. Damour,et al.  Hidden symmetries and the fermionic sector of eleven-dimensional supergravity , 2005, hep-th/0512163.

[3]  M. Graña Flux compactifications in string theory: A Comprehensive review , 2005, hep-th/0509003.

[4]  F. Clarke,et al.  1 9 N ov 2 00 4 On geodesic envelopes and caustics , 2004 .

[5]  Unifying R-symmetry in M-theory , 2007, hep-th/0703262.

[6]  H. Nicolai,et al.  Higher spin representations of K(E10) , 2016, 1602.04116.

[7]  C. Strickland-constable,et al.  Supersymmetric backgrounds, the Killing superalgebra, and generalised special holonomy , 2016, 1606.09304.

[8]  E. Sezgin,et al.  On supersymmetric E11 exceptional field theory , 2019, Journal of High Energy Physics.

[9]  H. Nicolai,et al.  On $K(E_9)$ , 2004 .

[10]  Ralf Kohl,et al.  Extending generalized spin representations , 2017, 1705.00118.

[11]  H. Nicolai,et al.  On Spinorial Representations of Involutory Subalgebras of Kac–Moody Algebras , 2018, Partition Functions and Automorphic Forms.

[12]  T. Damour,et al.  Fermionic Kac-Moody billiards and supergravity , 2009, 0906.3116.

[13]  Axel Kleinschmidt,et al.  Representations of involutory subalgebras of affine Kac-Moody algebras , 2021 .

[14]  P. Levy,et al.  Generalized spin representations , 2011, 1110.5576.

[15]  M. Henneaux,et al.  Hidden symmetries and Dirac fermions , 2005, hep-th/0506009.

[16]  D. Waldram,et al.  Supersymmetric backgrounds and generalised special holonomy , 2014, 1411.5721.

[17]  H. Samtleben,et al.  Supersymmetric E7(7) exceptional field theory , 2014, 1406.3235.

[18]  E11 and M theory , 2001, hep-th/0104081.

[19]  K(E9) from K(E10) , 2006, hep-th/0611314.

[20]  H. Nicolai The integrability of N=16 supergravity , 1987 .

[21]  Ralf Kohl,et al.  FUNDAMENTAL GROUPS OF SPLIT REAL KAC-MOODY GROUPS AND GENERALIZED REAL FLAG MANIFOLDS , 2019, Transformation Groups.

[22]  H. Nicolai,et al.  IIA and IIB spinors from K(E10) , 2006, hep-th/0603205.

[23]  E. Cremmer,et al.  The SO(8) supergravity , 1979 .

[24]  T. Damour,et al.  E10 and a small tension expansion of m theory. , 2002, Physical review letters.

[25]  H. Nicolai,et al.  d = 11 supergravity with local SU(8) invariance , 1986 .

[26]  R. Minasian,et al.  Generalized structures of N=1 vacua , 2005, hep-th/0505212.

[27]  H. Nicolai d = 11 supergravity with local SO(16) invariance , 1987 .

[28]  H. Nicolai,et al.  On higher spin realizations of K(E10) , 2013, 1307.0413.

[29]  H. Nicolai,et al.  Canonical structure of the E10 model and supersymmetry , 2014, 1411.5893.

[30]  E. Sezgin,et al.  Supermembranes and Eleven-Dimensional Supergravity , 1987 .

[31]  H. Samtleben,et al.  The many facets of exceptional field theory , 2019, Proceedings of Corfu Summer Institute 2018 "School and Workshops on Elementary Particle Physics and Gravity" — PoS(CORFU2018).

[32]  On the Geroch Group , 1986 .

[33]  S. Berman On generators and relations for certain involutory subalgebras of kac-moody lie algebras ∗ , 1989 .

[34]  H. Samtleben,et al.  E8(8) exceptional field theory: geometry, fermions and supersymmetry , 2016, 1607.03119.

[35]  The topology of U-duality (sub)groups , 2003, hep-th/0309106.

[36]  K(E10), supergravity and fermions , 2006, hep-th/0606105.

[37]  H. Nicolai,et al.  On the quantum mechanics of supermembranes , 1988 .

[38]  E. Palti,et al.  AdS5 Solutions of Type IIB Supergravity and Generalized Complex Geometry , 2009, 0906.4109.

[39]  P. West,et al.  E11 and supersymmetry , 2010, 1011.5820.

[40]  B. Julia KAC-MOODY SYMMETRY OF GRAVITATION AND SUPERGRAVITY THEORIES , 1982 .

[41]  Hidden spacetime symmetries and generalized holonomy in M-theory ☆ , 2003, hep-th/0303140.