Generalised holonomies and K(E9)
暂无分享,去创建一个
[1] M. Duff,et al. Multi-membrane solutions of D = 11 supergravity , 1991 .
[2] T. Damour,et al. Hidden symmetries and the fermionic sector of eleven-dimensional supergravity , 2005, hep-th/0512163.
[3] M. Graña. Flux compactifications in string theory: A Comprehensive review , 2005, hep-th/0509003.
[4] F. Clarke,et al. 1 9 N ov 2 00 4 On geodesic envelopes and caustics , 2004 .
[5] Unifying R-symmetry in M-theory , 2007, hep-th/0703262.
[6] H. Nicolai,et al. Higher spin representations of K(E10) , 2016, 1602.04116.
[7] C. Strickland-constable,et al. Supersymmetric backgrounds, the Killing superalgebra, and generalised special holonomy , 2016, 1606.09304.
[8] E. Sezgin,et al. On supersymmetric E11 exceptional field theory , 2019, Journal of High Energy Physics.
[9] H. Nicolai,et al. On $K(E_9)$ , 2004 .
[10] Ralf Kohl,et al. Extending generalized spin representations , 2017, 1705.00118.
[11] H. Nicolai,et al. On Spinorial Representations of Involutory Subalgebras of Kac–Moody Algebras , 2018, Partition Functions and Automorphic Forms.
[12] T. Damour,et al. Fermionic Kac-Moody billiards and supergravity , 2009, 0906.3116.
[13] Axel Kleinschmidt,et al. Representations of involutory subalgebras of affine Kac-Moody algebras , 2021 .
[14] P. Levy,et al. Generalized spin representations , 2011, 1110.5576.
[15] M. Henneaux,et al. Hidden symmetries and Dirac fermions , 2005, hep-th/0506009.
[16] D. Waldram,et al. Supersymmetric backgrounds and generalised special holonomy , 2014, 1411.5721.
[17] H. Samtleben,et al. Supersymmetric E7(7) exceptional field theory , 2014, 1406.3235.
[18] E11 and M theory , 2001, hep-th/0104081.
[19] K(E9) from K(E10) , 2006, hep-th/0611314.
[20] H. Nicolai. The integrability of N=16 supergravity , 1987 .
[21] Ralf Kohl,et al. FUNDAMENTAL GROUPS OF SPLIT REAL KAC-MOODY GROUPS AND GENERALIZED REAL FLAG MANIFOLDS , 2019, Transformation Groups.
[22] H. Nicolai,et al. IIA and IIB spinors from K(E10) , 2006, hep-th/0603205.
[23] E. Cremmer,et al. The SO(8) supergravity , 1979 .
[24] T. Damour,et al. E10 and a small tension expansion of m theory. , 2002, Physical review letters.
[25] H. Nicolai,et al. d = 11 supergravity with local SU(8) invariance , 1986 .
[26] R. Minasian,et al. Generalized structures of N=1 vacua , 2005, hep-th/0505212.
[27] H. Nicolai. d = 11 supergravity with local SO(16) invariance , 1987 .
[28] H. Nicolai,et al. On higher spin realizations of K(E10) , 2013, 1307.0413.
[29] H. Nicolai,et al. Canonical structure of the E10 model and supersymmetry , 2014, 1411.5893.
[30] E. Sezgin,et al. Supermembranes and Eleven-Dimensional Supergravity , 1987 .
[31] H. Samtleben,et al. The many facets of exceptional field theory , 2019, Proceedings of Corfu Summer Institute 2018 "School and Workshops on Elementary Particle Physics and Gravity" — PoS(CORFU2018).
[32] On the Geroch Group , 1986 .
[33] S. Berman. On generators and relations for certain involutory subalgebras of kac-moody lie algebras ∗ , 1989 .
[34] H. Samtleben,et al. E8(8) exceptional field theory: geometry, fermions and supersymmetry , 2016, 1607.03119.
[35] The topology of U-duality (sub)groups , 2003, hep-th/0309106.
[36] K(E10), supergravity and fermions , 2006, hep-th/0606105.
[37] H. Nicolai,et al. On the quantum mechanics of supermembranes , 1988 .
[38] E. Palti,et al. AdS5 Solutions of Type IIB Supergravity and Generalized Complex Geometry , 2009, 0906.4109.
[39] P. West,et al. E11 and supersymmetry , 2010, 1011.5820.
[40] B. Julia. KAC-MOODY SYMMETRY OF GRAVITATION AND SUPERGRAVITY THEORIES , 1982 .
[41] Hidden spacetime symmetries and generalized holonomy in M-theory ☆ , 2003, hep-th/0303140.