Performance Bounds for Nonbinary Linear Block Codes Over Memoryless Symmetric Channels

The performance of nonbinary linear block codes is studied in this paper via the derivation of new upper bounds on the block error probability under maximum-likelihood (ML) decoding. The transmission of these codes is assumed to take place over a memoryless and symmetric channel. The new bounds, which are based on the Gallager bounds and their variations, are applied to the Gallager ensembles of nonbinary and regular low-density parity-check (LDPC) codes. These upper bounds are also compared with sphere-packing lower bounds. This study indicates that the new upper bounds are useful for the performance evaluation of coded communication systems which incorporate nonbinary coding techniques.

[1]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[2]  Shlomo Shamai,et al.  Tight exponential upper bounds on the ML decoding error probability of block codes over fully interleaved fading channels , 2003, IEEE Trans. Commun..

[3]  Yuan Zhou Introduction to Coding Theory , 2010 .

[4]  Robert G. Gallager,et al.  A simple derivation of the coding theorem and some applications , 1965, IEEE Trans. Inf. Theory.

[5]  Patrick Robertson,et al.  Bandwidth-Efficient Turbo Trellis-Coded Modulation Using Punctured Component Codes , 1998, IEEE J. Sel. Areas Commun..

[6]  Emina Soljanin,et al.  Reliable channel regions for good binary codes transmitted over parallel channels , 2006, IEEE Transactions on Information Theory.

[7]  David Burshtein,et al.  Asymptotic enumeration methods for analyzing LDPC codes , 2004, IEEE Transactions on Information Theory.

[8]  Eimear Byrne,et al.  Linear-Programming Decoding of Nonbinary Linear Codes , 2007, IEEE Transactions on Information Theory.

[9]  Li Zhang,et al.  Non-binary LDPC codes vs. Reed-Solomon codes , 2008, 2008 Information Theory and Applications Workshop.

[10]  David J. C. MacKay,et al.  Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.

[11]  Shlomo Shamai,et al.  Performance Analysis of Linear Codes under Maximum-Likelihood Decoding: A Tutorial , 2006, Found. Trends Commun. Inf. Theory.

[12]  Masoud Salehi,et al.  Turbo codes and turbo coded modulation systems: analysis and performance bounds , 1998 .

[13]  David Burshtein,et al.  Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels , 2005, IEEE Transactions on Information Theory.

[14]  Idan Goldenberg,et al.  Coding for Parallel Channels: Gallager Bounds and Applications to Turbo-Like Codes , 2007, IEEE Transactions on Information Theory.

[15]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[16]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[17]  Masoud Salehi,et al.  New performance bounds for turbo codes , 1998, IEEE Trans. Commun..

[18]  Dariush Divsalar,et al.  Bandwidth efficient parallel concatenated coding schemes , 1995 .

[19]  David Burshtein,et al.  Bounds on the maximum-likelihood decoding error probability of low-density parity-check codes , 2000, IEEE Trans. Inf. Theory.

[20]  Ron M. Roth,et al.  Introduction to Coding Theory , 2019, Discrete Mathematics.

[21]  Masoud Salehi,et al.  Performance bounds for turbo-coded modulation systems , 1999, IEEE Trans. Commun..

[22]  Ludovicus Marinus Gerardus Maria Tolhuizen,et al.  On maximum distance separable codes over alphabets of arbitrary size , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[23]  Mark F. Flanagan,et al.  Codeword-independent performance of nonbinary linear codes under linear-programming and sum-product decoding , 2008, 2008 IEEE International Symposium on Information Theory.

[24]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[25]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[26]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[27]  Sheng Tong,et al.  Tangential Sphere Bounds on the Ensemble Performance of ML Decoded Gallager Codes via Their Exact Ensemble Distance Spectrum , 2008, 2008 IEEE International Conference on Communications.

[28]  Uri Erez,et al.  The ML decoding performance of LDPC ensembles over Z/sub q/ , 2005, IEEE Transactions on Information Theory.

[29]  Meir Feder,et al.  Random coding techniques for nonrandom codes , 1999, IEEE Trans. Inf. Theory.

[30]  Shlomo Shamai,et al.  On improved bounds on the decoding error probability of block codes over interleaved fading channels, with applications to turbo-like codes , 2001, IEEE Trans. Inf. Theory.

[31]  Rüdiger L. Urbanke,et al.  Density Evolution, Thresholds and the Stability Condition for Non-binary LDPC Codes , 2005, ArXiv.

[32]  D. Mackay,et al.  Low-Density Parity Check Codes over , 1998 .

[33]  Vitaly Skachek,et al.  On LP decoding of nonbinary expander codes , 2009, 2009 IEEE International Symposium on Information Theory.

[34]  Dariush Divsalar,et al.  Upper bounds to error probabilities of coded systems beyond the cutoff rate , 2003, IEEE Trans. Commun..

[35]  Marc P. C. Fossorier,et al.  Sphere-packing bounds revisited for moderate block lengths , 2004, IEEE Transactions on Information Theory.

[36]  David Burshtein,et al.  On the application of LDPC codes to arbitrary discrete-memoryless channels , 2003, IEEE Transactions on Information Theory.

[37]  Shlomo Shamai,et al.  Improved upper bounds on the ensemble performance of ML decoded low density parity check codes , 2000, IEEE Communications Letters.

[38]  Cong Ling,et al.  New Gallager Bounds in Block-Fading Channels , 2007, IEEE Transactions on Information Theory.

[39]  Ruoheng Liu,et al.  Adaptive Transmission with Variable-Rate Turbo Bit-Interleaved Coded Modulation , 2007, IEEE Transactions on Wireless Communications.

[40]  Robert F. H. Fischer,et al.  Multilevel codes: Theoretical concepts and practical design rules , 1999, IEEE Trans. Inf. Theory.

[41]  Shlomo Shamai,et al.  Variations on the Gallager bounds, connections, and applications , 2002, IEEE Trans. Inf. Theory.

[42]  Andrew J. Viterbi,et al.  Principles of Digital Communication and Coding , 1979 .

[43]  Neil J. A. Sloane,et al.  Techniques of Bounding the Probability of Decoding Error for Block Coded Modulation Structures , 1994 .

[44]  D. Divsalar A Simple Tight Bound on Error Probability of Block Codes with Application to Turbo Codes , 1999 .

[45]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .

[46]  C. E. SHANZOZ,et al.  Lower Bounds to Error Probability for Coding on Discrete Mernoryless Channels , 2004 .

[47]  Elwyn R. Berlekamp,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. II , 1967, Inf. Control..

[48]  Igal Sason,et al.  An Improved Sphere-Packing Bound for Finite-Length Codes Over Symmetric Memoryless Channels , 2006, IEEE Transactions on Information Theory.

[49]  K. Weylandt,et al.  Channels , 1999, The Journal of physiology.

[50]  H. Vincent Poor,et al.  Finite-Dimensional Bounds on ${\BBZ}_m$ and Binary LDPC Codes With Belief Propagation Decoders , 2006, IEEE Transactions on Information Theory.

[51]  Gregory Poltyrev,et al.  Bounds on the decoding error probability of binary linear codes via their spectra , 1994, IEEE Trans. Inf. Theory.