Enriching Si quantum dots in a Si-rich SiNx matrix for strong χ(3) optical nonlinearity

To meet the demand of all-optical data processing applications, the SiNx layer with enriching Si quantum dots (Si-QDs) for achieving strong optical nonlinearity is demonstrated with its χ(3) coefficient enhanced by three orders of magnitude larger than that of stoichiometric Si3N4. With excessive Si concentration enriched from 16.3% to 23.4%, the dense Si-QDs apparently self-assemble in the SiNx matrix with an average size of ∼0.95 nm and volume density of 5 × 1019 # cm−3. The Si-QD doped Si-rich SiNx not only enlarges its third-order nonlinear absorption coefficient from 0.01 to 1.8 m GW−1, but also increases its nonlinear refractive index from 5.7 × 10−13 to 9.2 × 10−12 cm2 W−1 at a wavelength of 800 nm, as attributed to the localized excitons with decreased effective Bohr radius in quantum confined Si-QDs. Such a SiNx:Si-QD material enables strong optical nonlinearity in compact nonlinear nanophotonic waveguide devices developed for future all-optical data processors.

[1]  Mark L Brongersma,et al.  Near-infrared free-carrier absorption in silicon nanocrystals. , 2009, Optics letters.

[2]  Mark L Brongersma,et al.  Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity. , 2008, Nano letters.

[3]  Narrow-Linewidth and Wavelength-Tunable Red-Light Emission From an Si-Quantum-Dot Embedded Oxynitride Distributed Bragg Reflector , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  B Jalali,et al.  Influence of nonlinear absorption on Raman amplification in Silicon waveguides. , 2004, Optics express.

[5]  Strong white and blue photoluminescence from silicon nanocrystals in SiNx grown by remote PECVD using SiCl4/NH3 , 2007 .

[6]  Gong-Ru Lin,et al.  Enhancing Optical Nonlinearity in a Nonstoichiometric SiN Waveguide for Cross-Wavelength All-Optical Data Processing , 2015 .

[7]  S. Shi,et al.  Distributed Bragg reflector enhancement of electroluminescence from a silicon nanocrystal light emitting device , 2010 .

[8]  X. Liao,et al.  Study of microstructure of high stability hydrogenated amorphous silicon films by Raman scattering and infrared absorption spectroscopy , 1998 .

[9]  Shing-chung Wang,et al.  Localized Lasing Mode in GaN Quasi-Periodic Nanopillars at Room Temperature , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Sailing He,et al.  Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion. , 2011, Applied optics.

[11]  Kazuhiro Ikeda,et al.  Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides. , 2008, Optics express.

[12]  Lorenzo Pavesi,et al.  Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition , 2002 .

[13]  B. Garrido,et al.  Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition , 2008 .

[14]  Kazuhiro Ikeda,et al.  Group velocity dispersion and self phase modulation in silicon nitride waveguides , 2010 .

[15]  Yu Wu,et al.  Hybrid Graphene-Microfiber Waveguide for Chemical Gas Sensing , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Pablo Sanchis,et al.  FWM in silicon nanocrystal-based sandwiched slot waveguides , 2010 .

[17]  Franklin Chau-Nan Hong,et al.  Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix , 2005 .

[18]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[19]  Gong-Ru Lin,et al.  Saturated small-signal gain of Si quantum dots embedded in SiO2/SiOx/SiO2 strip-loaded waveguide amplifier made on quartz , 2009 .

[20]  Christian Moormann,et al.  High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators. , 2007, Optics letters.

[21]  D. Prather,et al.  Mitigation of Si nanocrystal free carrier absorption loss at 1.5 microm in a concentric microdisk structure. , 2010, Optics letters.

[22]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[23]  Lorenzo Pavesi,et al.  Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals , 2003 .

[24]  Allan,et al.  Theoretical aspects of the luminescence of porous silicon. , 1993, Physical review. B, Condensed matter.

[25]  Michal Lipson,et al.  Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides. , 2010, Optics express.

[26]  Cosimo Lacava,et al.  Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals , 2011 .

[27]  Michal Lipson,et al.  All-optical switching on a silicon chip. , 2004, Optics letters.

[28]  Lorenzo Pavesi,et al.  Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. , 2010, Nano letters.

[29]  C Torres-Torres,et al.  Thermo-optic effect and optical third order nonlinearity in nc-Si embedded in a silicon-nitride film. , 2008, Optics express.

[30]  A. Peacock,et al.  Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers. , 2010, Optics express.

[31]  M. Fujii,et al.  Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO2 films: Annealing temperature dependence , 2010 .

[32]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[33]  Jan Linnros,et al.  Carrier lifetime measurements using free carrier absorption transients. II. Lifetime mapping and effects of surface recombination , 1998 .

[34]  C. Whang,et al.  Electroluminescence mechanism in SiOx layers containing radiative centers , 2002 .

[35]  P. Dugourd,et al.  New phases of amorphous carbon and silicon films obtained by low energy cluster beam deposition , 1996 .

[36]  Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate. , 2010, Optics express.

[37]  I Cristiani,et al.  Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides. , 2012, Optics express.

[38]  P. Chu,et al.  Origin of strong white electroluminescence from dense Si nanodots embedded in silicon nitride. , 2012, Optics letters.

[39]  Fabrice Gourbilleau,et al.  Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54μm , 2008 .

[40]  Mendoza,et al.  Enhancement of the third-order nonlinear optical susceptibility in Si quantum wires. , 1993, Physical review. B, Condensed matter.

[41]  Y. G. Wang,et al.  High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride , 2003 .

[42]  Xide Xie,et al.  Raman shifts in Si nanocrystals , 1996 .

[43]  G. Ingo,et al.  X‐ray photoelectron spectroscopy investigation on the chemical structure of amorphous silicon nitride (a‐SiNx) , 1989 .

[44]  Elton Marchena,et al.  Free-carrier absorption modulation in silicon nanocrystal slot waveguides. , 2010, Optics letters.

[45]  L Ferraioli,et al.  Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm. , 2009, Optics express.

[46]  J. Valenta,et al.  On the origin of the fast photoluminescence band in small silicon nanoparticles , 2008 .

[47]  Karthik Narayanan,et al.  Optical nonlinearities in hydrogenated-amorphous silicon waveguides. , 2010, Optics express.

[48]  Gong-Ru Lin,et al.  All‐optical modulation based on silicon quantum dot doped SiOx:Si‐QD waveguide , 2014 .

[49]  Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics , 2012 .

[50]  Xiaozhou Liu,et al.  Raman scattering of alternating nanocrystalline silicon/amorphous silicon multilayers , 1996 .

[51]  Gong-Ru Lin,et al.  Microwatt MOSLED Using ${\hbox {SiO}}_{\rm x}$ With Buried Si Nanocrystals on Si Nano-Pillar Array , 2008, Journal of Lightwave Technology.

[52]  S. Huet,et al.  Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy , 2001 .