Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction

[1]  R. Tenzer,et al.  Reformulation of the Vening-Meinesz Moritz Inverse Problem of Isostasy for Isostatic Gravity Disturbances , 2012 .

[2]  P. Novák,et al.  Global Crust-Mantle Density Contrast Estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G , 2012, Pure and Applied Geophysics.

[3]  L. Sjöberg,et al.  Non-isostatic effects on crustal thickness: A study using CRUST2.0 in Fennoscandia , 2012 .

[4]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[5]  R. Tenzer,et al.  The Bathymetric Stripping Corrections to Gravity Field Quantities for a Depth-Dependent Model of Seawater Density , 2012 .

[6]  P. Novák,et al.  Spatial and Spectral Analysis of Refined Gravity Data for Modelling the Crust–Mantle Interface and Mantle-Lithosphere Structure , 2012, Surveys in Geophysics.

[7]  Lars E. Sjöberg,et al.  Comparison of crustal thickness from two gravimetric-isostatic models and CRUST2.0 , 2011 .

[8]  P. Novák,et al.  On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution , 2011 .

[9]  Lars E. Sjöberg,et al.  A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0 , 2011 .

[10]  Randy Showstack,et al.  World Ocean Database , 2009 .

[11]  Lars E. Sjöberg,et al.  Solving Vening Meinesz-Moritz inverse problem in isostasy , 2009 .

[12]  R. Tenzer,et al.  Global maps of the CRUST 2.0 crustal components stripped gravity disturbances , 2009 .

[13]  C. Braitenberg,et al.  A new analytical solution estimating the flexural rigidity in the Central Andes , 2007 .

[14]  P. Novák,et al.  Secondary indirect effects in gravity anomaly data inversion or interpretation , 2007 .

[15]  Yong Wang,et al.  Basement structures from satellite-derived gravity field: South China Sea ridge , 2006 .

[16]  William J. Hinze,et al.  Bouguer reduction density, why 2.67? , 2003 .

[17]  Peter Schwintzer,et al.  Density of the continental roots: compositional and thermal contributions , 2003 .

[18]  C. Reigber,et al.  A new isostatic model of the lithosphere and gravity field , 2003 .

[19]  A. B. WATTS,et al.  Isostasy and Flexure of the Lithosphere , 2001 .

[20]  P. Schwintzer,et al.  A GLOBAL ISOSTATIC GRAVITY MODEL OF THE EARTH , 1999 .

[21]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[22]  S. Ekholm,et al.  A full coverage, high-resolution, topographic model of Greenland computed from a variety of digital elevation data , 1996 .

[23]  D. Eckhardt The gains of small circular, square and rectangular filters for surface waves on a sphere , 1983 .

[24]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[25]  W. Heiskanen,et al.  The Earth And Its Gravity Field , 1959 .

[26]  J. Pratt I. On the attraction of the Himalaya Mountains, and of the elevated region beyond them, upon the plumb-line in India , 1855, Proceedings of the Royal Society of London.

[27]  G. Airy III. On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys , 1855, Philosophical Transactions of the Royal Society of London.

[28]  P. Novák,et al.  Spectral harmonic analysis and synthesis of Earth’s crust gravity field , 2011, Computational Geosciences.

[29]  Robert Tenzer,et al.  A Mathematical Model of the Global Ocean Saltwater Density Distribution , 2011, Pure and Applied Geophysics.

[30]  R. Tenzer,et al.  A mathematical model of the bathymetry-generated external gravitational field , 2010 .

[31]  R. Tenzer,et al.  The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast , 2010 .

[32]  R. Tenzer,et al.  A global correlation of the step-wise consolidated crust-stripped gravity field quantities with the topography, bathymetry, and the CRUST 2.0 Moho boundary , 2009 .

[33]  P. Novák High Resolution Constituents of the Earth’s Gravitational Field , 2009 .

[34]  T. Tiira,et al.  The Moho depth map of the European Plate , 2009 .

[35]  Timothy P. Boyer,et al.  WORLD OCEAN DATABASE 2005 TUTORIAL , 2006 .

[36]  N. K. Pavlis,et al.  Terrain-Related Gravimetric Quantities Computed for the Next EGM , 2006 .

[37]  C. Bassin,et al.  The Current Limits of resolution for surface wave tomography in North America , 2000 .

[38]  H. Moritz Advanced Physical Geodesy , 1980 .

[39]  F. A. Vening Meinesz,et al.  Une Nouvelle Méthode Pour la Réduction Isostatique Régionale de L’intensité de la Pesanteur , 1931 .

[40]  W. Sitter The Figure of the Earth , 1901, Nature.

[41]  J. Pratt I. On the attraction of the Himalaya Mountains, and of the elevated regions beyond them, upon the plumb-line in India , 1855, Philosophical Transactions of the Royal Society of London.