Flow physics in MEMS

Abstract Interest in microelectromechanical systems (MEMS) has experienced explosive growth during the past few years. Such small devices typically have characteristic size ranging from 1 mm down to 1 micron, and may include sensors, actuators, motors, pumps, turbines, gears, ducts and valves. Microdevices often involve mass, momentum and energy transport. Modeling gas and liquid flows through MEMS may necessitate including slip, rarefaction, compressibility, intermolecular forces and other unconventional effects. In this article, I shall provide a methodical approach to flow modeling for a broad variety of microdevices. The continuum-based Navier–Stokes equations — with either the traditional no-slip or slip-flow boundary conditions — work only for a limited range of Knudsen numbers above which alternative models must be sought. These include molecular dynamics (MD), Boltzmann equation, Direct Simulation Monte Carlo (DSMC), and other deterministic/probabilistic molecular models. The present paper will broadly survey available methodologies to model and compute transport phenomena within microdevices.

[1]  A. Mezić STABILITY REGIMES OF THIN LIQUID FILMS , 1998 .

[2]  George Em Karniadakis,et al.  REPORT: A MODEL FOR FLOWS IN CHANNELS, PIPES, AND DUCTS AT MICRO AND NANO SCALES , 1999 .

[3]  Chih-Ming Ho,et al.  In situ monitoring and universal modelling of sacrificial PSG etching using hydrofluoric acid , 1993, [1993] Proceedings IEEE Micro Electro Mechanical Systems.

[4]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[5]  W. R. Schowalter,et al.  Measurements of slip at the wall during flow of high-density polyethylene through a rectangular conduit , 1989 .

[6]  Jacob N. Israelachvili,et al.  Measurement of the viscosity of liquids in very thin films , 1986 .

[7]  E Eller,et al.  New ideas for affordable space missions , 1996, Aerospace America.

[8]  J. Zemel,et al.  Liquid transport in micron and submicron channels , 1990 .

[9]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[10]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[11]  S. Richardson,et al.  On the no-slip boundary condition , 1973, Journal of Fluid Mechanics.

[12]  E. Muntz,et al.  Rarefied Gas Dynamics , 1989 .

[13]  M N Kogan Molecular Gas Dynamics , 1973 .

[14]  Thomas W. Chapman,et al.  Laminar compressible flow in a tube , 1986 .

[15]  S. D. Senturia,et al.  Macro Power from Micro Machinery , 1997, Science.

[16]  K. Breuer,et al.  Numerical Modeling of Micromechanical Devices Using the Direct Simulation Monte Carlo Method , 1996 .

[17]  S. H. Davis,et al.  On the motion of a fluid-fluid interface along a solid surface , 1974, Journal of Fluid Mechanics.

[18]  C. Cercignani Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations , 2000 .

[19]  Norman C. Tien,et al.  SILICON MICROMACHINED THERMAL SENSORS AND ACTUATORS , 1997 .

[20]  Jay N. Zemel,et al.  Gas flow in micro-channels , 1995, Journal of Fluid Mechanics.

[21]  H. Cheng,et al.  Perspectives on Hypersonic Viscous Flow Research , 1993 .

[22]  J. J. Sniegowski,et al.  The design and modelling of a comb-drive-based microengine for mechanism drive applications , 1992 .

[23]  Patricia McGuiggan,et al.  Liquid to solidlike transitions of molecularly thin films under shear , 1990 .

[24]  Lennart Löfdahl,et al.  MEMS applications in turbulence and flow control , 1999 .

[25]  G. Kovacs Micromachined Transducers Sourcebook , 1998 .

[26]  Yu-Chong Tai,et al.  Integrated movable micromechanical structures for sensors and actuators , 1988 .

[27]  Ilene J. Busch‐Vishniac Trends in Electromechanical Transduction , 1998 .

[28]  J.J. Sniegowski,et al.  Surface-micromachined gear trains driven by an on-chip electrostatic microengine , 1996, IEEE Electron Device Letters.

[29]  Y. Tai,et al.  MEMS for pressure distribution studies of gaseous flows in microchannels , 1995, Proceedings IEEE Micro Electro Mechanical Systems. 1995.

[30]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[31]  D. v.,et al.  The moving contact line: the slip boundary condition , 1976, Journal of Fluid Mechanics.

[32]  Chih-Ming Ho,et al.  REVIEW: MEMS and Its Applications for Flow Control , 1996 .

[33]  Chih-Ming Ho,et al.  MICRO-ELECTRO-MECHANICAL-SYSTEMS (MEMS) AND FLUID FLOWS , 1998 .

[34]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[35]  I. Prigogine,et al.  Transport Processes in Statistical Mechanics , 1959 .

[36]  I. Amdur,et al.  Kinetic Theory of Gases , 1959 .

[37]  W. Ko,et al.  Micromachining and Micropackaging of Transducers , 1986 .

[38]  S. Troian,et al.  A general boundary condition for liquid flow at solid surfaces , 1997, Nature.

[39]  M. Madou Fundamentals of microfabrication , 1997 .

[40]  J. Knight DUST MITE'S DILEMMA , 1999 .

[41]  Ernest J. Garcia,et al.  Surface micromachined microengine , 1995 .

[42]  S. A. Schaaf,et al.  Flow of rarefied gases , 1961 .

[43]  Richard H. Nadolink,et al.  Bibliography on Skin Friction Reduction With Polymers and Other Boundary-Layer Additives , 1995 .

[44]  B. Z. Cybyk,et al.  Direct Simulation Monte Carlo: Recent Advances and Applications , 1998 .

[45]  P. Barth,et al.  Silicon micromechanical devices , 1983 .

[46]  Robbins,et al.  Simulations of contact-line motion: Slip and the dynamic contact angle. , 1989, Physical review letters.

[47]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[48]  S. Hess,et al.  Rheology of dense model fluids via nonequilibrium molecular dynamics: Shear thinning and ordering transition , 1989 .

[49]  Harry Hutchinson,et al.  Feature Focus: Skyscrapers in a Microworld , 2000 .

[50]  G. Emanuel,et al.  Perspective on hypersonic nonequilibrium flow , 1995 .

[51]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[52]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[53]  M. Gad-el-Hak The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture , 1999 .

[54]  Lloyd B. Thomas,et al.  Comparative Measurements of Tangential Momentum and Thermal Accommodations on Polished and on Roughened Steel Spheres , 1974 .

[55]  M. Smoluchowski von Smolan,et al.  Ueber Wärmeleitung in verdünnten Gasen , 1898 .

[56]  Derek Y. C. Chan,et al.  The drainage of thin liquid films between solid surfaces , 1985 .

[57]  George Em Karniadakis,et al.  Rarefaction and Compressibility Effects in Gas Microflows , 1996 .

[58]  R. Wetton Polymer Systems: Deformation and Flow , 1968 .

[59]  Mikhail Naumovich Kogan,et al.  Rarefied Gas Dynamics , 1969 .

[60]  M. Valenti Gas pipelines go electric , 1996 .

[61]  Joel Koplik,et al.  Continuum Deductions from Molecular Hydrodynamics , 1997 .

[62]  J. Bryzek,et al.  Micromachines on the march , 1994, IEEE Spectrum.

[63]  K. J. Gabriel,et al.  Surface-normal electrostatic/pneumatic actuator , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[64]  H. Berg,et al.  Compressible laminar flow in a capillary , 1993, Journal of Fluid Mechanics.

[65]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[66]  P. Debye,et al.  Flow of Liquid Hydrocarbons in Porous Vycor , 1959 .

[67]  J. Israelachvili Intermolecular and surface forces , 1985 .

[68]  Mohamed Gad-el-Hak,et al.  Questions in Fluid Mechanics: Stokes’ Hypothesis for a Newtonian, Isotropic Fluid , 1995 .

[69]  Ahmed K. Noor,et al.  The Great Out of the Small , 2000 .

[70]  Louis Rosenhead,et al.  Laminar boundary layers , 1963 .

[71]  M. Denn ISSUES IN VISCOELASTIC FLUID MECHANICS , 1990 .

[72]  I. Mezić,et al.  Instability of Ultra-Thin Water Films and the Mechanism of Droplet Formation on Hydrophilic Surfaces , 1999 .

[73]  R. Muller,et al.  IC-processed electrostatic micromotors , 1989 .

[74]  G. Paula,et al.  MEMS sensors branch out , 1996 .

[75]  Yu-Chong Tai,et al.  IC-processed electrostatic synchronous micromotors , 1989 .

[76]  M. Gad-el-Hak The MEMS Handbook , 2001 .

[77]  Jens Anders Branebjerg,et al.  Microfluidics-a review , 1993 .

[78]  Mohamed Gad-el-Hak,et al.  Flow Control: Passive, Active, and Reactive Flow Management , 2000 .

[79]  J. Maxwell,et al.  On Stresses in Rarified Gases Arising from Inequalities of Temperature , 2022 .

[80]  C. Mastrangelo,et al.  A simple experimental technique for the measurement of the work of adhesion of microstructures , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.

[81]  G. A. Bird,et al.  The velocity distribution function within a shock wave , 1967, Journal of Fluid Mechanics.

[82]  K. Breuer,et al.  Gaseous slip flow in long microchannels , 1997 .

[83]  P. E. Suetin,et al.  Experimental investigation of rarefied gas flow in different channels , 1974, Journal of Fluid Mechanics.

[84]  Graeme A. Bird,et al.  Monte Carlo Simulation of Gas Flows , 1978 .

[85]  Went Fw,et al.  The size of man. , 1968 .

[86]  S. Ashley,et al.  Getting a microgrip in the operating room , 1996 .

[87]  H. Haim Transport Processes Associated with Micro-Devices , 1994 .

[88]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[89]  R. Lipkin Micro Steam Engine Makes Forceful Debut , 1993 .

[90]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[91]  Anna Walsh STUDIES IN MOLECULAR DYNAMICS , 1965 .

[92]  Ivan Amato,et al.  Fomenting a Revolution, in Miniature , 1998, Science.

[93]  Graeme A. Bird,et al.  Molecular Gas Dynamics , 1976 .

[94]  L. O'Connor MEMS : microelectromechanical systems , 1992 .

[95]  E. B. Dussan,et al.  LIQUIDS ON SOLID SURFACES: STATIC AND DYNAMIC CONTACT LINES , 1979 .

[96]  M. Knudsen Die Gesetze der Molekularstrmung und der inneren Reibungsstrmung der Gase durch Rhren , 1909 .

[97]  Graeme A. Bird,et al.  Approach to Translational Equilibrium in a Rigid Sphere Gas , 1963 .

[98]  Mihail C. Roco A Frontier for Engineering , 2001 .

[99]  H. Hogan,et al.  INVASION OF THE MICROMACHINES , 1996 .

[100]  S. Tison,et al.  Experimental data and theoretical modeling of gas flows through metal capillary leaks , 1993 .

[101]  Said Shakerin Engineering ArtWater Fountains Combine Fluid Handling, Motion Control, and Human Imagination to Let a Precious Resource Reveal its Whimsical Side. , 2001 .

[102]  William C. Tang,et al.  Laterally Driven Polysilicon Resonant Microstructures , 1989 .