Guidance on Safety/Health for Process Intensification including MS Design; Part I: Reaction Hazards

The implementation of process intensification by multiscale equipment will have a profound impact on the way chemicals are produced. The shift to higher space-time yields, higher temperatures, and a confined reaction volume comprises new risks, such as runaway reactions, decomposition, and incomplete conversion of reactants. Simplified spreadsheet calculations enable an estimation of the expected temperature profiles, conversion rates, and consequences of potential malfunction based on the reaction kinetics. The analysis illustrates that the range of optimal reaction conditions is almost congruent with the danger of an uncontrolled reaction. The risk of a spontaneous reaction with hot spots can be presumed if strong exothermic reactions are carried out in micro-designed reactors. At worst, decomposition follows the runaway reaction with the release of noncondensable gases. Calculations prove that a microreactor is not at risk in terms of overpressure as long as at least one end of the reactor is not blocked.

[1]  K. Mae Advanced chemical processing using microspace , 2007 .

[2]  Thomas Stief,et al.  Numerical Investigations of Optimal Heat Conductivity in Micro Heat Exchangers , 1999 .

[3]  Yong Wang,et al.  Microchannel reactors for fuel processing applications. I. Water gas shift reactor , 1999 .

[4]  X. Peng,et al.  HEAT TRANSFER CHARACTERISTICS OF WATER FLOWING THROUGH MICROCHANNELS , 1994 .

[5]  M. P. Burke,et al.  Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes , 2007 .

[6]  S. Schirrmeister,et al.  Direct gas-phase epoxidation of propene with hydrogen peroxide on TS-1 zeolite in a microstructured reactor , 2008 .

[7]  Holger Löwe,et al.  Mikroverfahrenstechnik: Komponenten - Anlagenkonzeption - Anwenderakzeptanz: Teil 2 , 2002 .

[8]  M. Gödde,et al.  Sicherheit in der Mikroreaktionstechnik , 2009 .

[9]  Jean-Claude Charpentier,et al.  In the frame of globalization and sustainability, process intensification, a path to the future of chemical and process engineering (molecules into money) , 2007 .

[10]  Wärmeabfuhr und Rückvermischung in mikrostrukturierten Apparaten , 2005 .

[11]  Karl Jellinek Lehrbuch der physikalischen Chemie , 1932 .

[12]  N. Hadjiconstantinou,et al.  Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels , 2002 .

[13]  Tibor Chován,et al.  Thermal runaway limit of tubular reactors, defined at the inflection point of the temperature profile , 1992 .

[14]  S. Scholl,et al.  Abkühlung von Medien mit hohen Prandtl‐Zahlen und stark temperaturabhängigen Viskositäten , 2008 .

[15]  Henrik Hahn,et al.  An industrial view of process intensification , 2009 .

[16]  Holger Löwe,et al.  Polymerisationen in mikrostrukturierten Reaktoren: Ein Überblick , 2005 .

[17]  B. Lewis,et al.  CHAPTER I – Theoretical Foundations , 1961 .

[18]  Götz Veser,et al.  Experimental and theoretical investigation of H2 oxidation in a high-temperature catalytic microreactor , 2001 .

[19]  Gunther Kolb,et al.  Micro-structured reactors for gas phase reactions , 2004 .

[20]  A. Berg,et al.  Heat and mass transfer in a square microchannel with asymmetric heating , 2004 .

[21]  Rüdiger Schütte,et al.  Microstructured Reactors for Heterogeneously Catalyzed Gas‐Phase Reactions on an Industrial Scale , 2005 .

[22]  Christian V. Stevens,et al.  A HCN-based reaction under microreactor conditions: industrially feasible and continuous synthesis of 3,4-diamino-1H-isochromen-1-ones , 2007 .

[23]  Volker Hessel,et al.  Organic Synthesis with Microstructured Reactors , 2005 .

[24]  U. Schygulla,et al.  Mikrostrukturmischer für Gasphasenprozesse – Herstellung, Charakterisierung und Anwendungsmöglichkeiten , 2004 .

[25]  Michael Schlüter,et al.  Synthesis of ionic liquids in micro-reactors—a process intensification study , 2007 .

[26]  P. Pfeifer,et al.  Controlled Hydrogen Oxidation in a Microstructured Mixer‐Reactor Module , 2007 .

[27]  Volker Hessel,et al.  Ionic liquid synthesis in a microstructured reactor for process intensification , 2007 .

[28]  J. Kobayashi,et al.  Multiphase organic synthesis in microchannel reactors. , 2006, Chemistry, an Asian journal.

[29]  Douglas Carson,et al.  Evaluation of an intensified continuous heat-exchanger reactor for inherently safer characteristics , 2008 .

[30]  Holger Löwe,et al.  Mikroverfahrenstechnik: Komponenten – Anlagenkonzeption – Anwenderakzeptanz – Teil 1 , 2002 .