Bounds for Functions of Dependent Risks

The problem of finding the best-possible lower bound on the distribution of a non-decreasing function of n dependent risks is solved when n=2 and a lower bound on the copula of the portfolio is provided. The problem gets much more complicated in arbitrary dimensions. When no information on the structure of dependence of the random vector is available, we provide a bound on the distribution function of the sum of risks which we prove to be better than the one generally used in the literature.

[1]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[2]  G. D. Makarov Estimates for the Distribution Function of a Sum of Two Random Variables When the Marginal Distributions are Fixed , 1982 .

[3]  Abe Sklar,et al.  Random variables, joint distribution functions, and copulas , 1973, Kybernetika.

[4]  Jan Dhaene,et al.  The safest dependence structure among risks , 1999 .

[5]  Thorsten Rheinländer Risk Management: Value at Risk and Beyond , 2003 .

[6]  M. J. Frank,et al.  Best-possible bounds for the distribution of a sum — a problem of Kolmogorov , 1987 .

[7]  N. Gaffke,et al.  On a class of extremal problems in statistics , 1981 .

[8]  Marco Moscadelli,et al.  The Modelling of Operational Risk: Experience with the Analysis of the Data Collected by the Basel Committee , 2004 .

[9]  Jan Dhaene,et al.  The Concept of Comonotonicity in Actuarial Science and Finance: Theory , 2002, Insurance: Mathematics and Economics.

[10]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[11]  Stochastic Inequalities,et al.  RANDOM VARIABLES WITH MAXIMUM SUMS , 1982 .

[12]  S. Rachev,et al.  Mass transportation problems , 1998 .

[13]  Robert C. Williamson,et al.  Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds , 1990, Int. J. Approx. Reason..

[14]  H. Kellerer Duality theorems for marginal problems , 1984 .

[15]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[16]  Michel Denuit,et al.  Distributional bounds for functions of dependent risks , 2002 .

[17]  Paul Embrechts,et al.  Using copulae to bound the Value-at-Risk for functions of dependent risks , 2003, Finance Stochastics.

[18]  L. Rüschendorf Sharpness of Fréchet-bounds , 1981 .

[19]  C. Genest,et al.  Stochastic bounds on sums of dependent risks , 1999 .