Amino-Termination of Silicon Carbide Nanoparticles

Silicon carbide nanoparticles (SiC NPs) are promising inorganic molecular-sized fluorescent biomarkers. It is imperative to develop methods to functionalize SiC NPs for certain biological applications. One possible route is to form amino groups on the surface, which can be readily used to attach target biomolecules. Here, we report direct amino-termination of aqueous SiC NPs. We demonstrate the applicability of the amino-terminated SiC NPs by attaching bovine serum albumin as a model for functionalization. We monitor the optical properties of the SiC NPs in this process and find that the fluorescence intensity is very sensitive to surface termination. Our finding may have implications for a few nanometers sized SiC NPs containing paramagnetic color centers with optically read electron spins.

[1]  Yachao Li,et al.  Fabrication of 4H–SiC nanoparticles using femtosecond pulsed laser ablation in deionized water , 2022, Optical Materials.

[2]  S. Saddow Silicon Carbide Technology for Advanced Human Healthcare Applications , 2022, Micromachines.

[3]  Vipul Sharma,et al.  Revisiting Zeta Potential, the Key Feature of Interfacial Phenomena, with Applications and Recent Advancements , 2022, ChemistrySelect.

[4]  W. B. Doriese,et al.  Metastable Brominated Nanodiamond Surface Enables Room Temperature and Catalysis-Free Amine Chemistry. , 2022, The journal of physical chemistry letters.

[5]  Á. Gali,et al.  Point Defects in Silicon Carbide for Quantum Technology , 2021, Wide Bandgap Semiconductors for Power Electronics.

[6]  J. Stuchlík,et al.  Highly spherical SiC nanoparticles grown in nonthermal plasma , 2021, Plasma Processes and Polymers.

[7]  R. Bhargava,et al.  On the Limit of Detection in Infrared Spectroscopic Imaging , 2021, Applied spectroscopy.

[8]  L. Kesavalu,et al.  Nanostructured Surfaces to Promote Osteoblast Proliferation and Minimize Bacterial Adhesion on Titanium , 2021, Materials.

[9]  C. Hänisch,et al.  Siloxane Coordination Revisited: Si−O Bond Character, Reactivity and Magnificent Molecular Shapes , 2021, European Journal of Inorganic Chemistry.

[10]  C. Reyes-Betanzo,et al.  Silicon and hydrogenated amorphous silicon carbide as biofunctional platforms for immunosensors , 2020 .

[11]  J. J. Mecholsky,et al.  Demonstration of a SiC Protective Coating for Titanium Implants , 2020, Materials.

[12]  N. T. Son,et al.  Developing silicon carbide for quantum spintronics , 2020 .

[13]  J. Valenta,et al.  Immunomodulatory Potential of Differently-Terminated Ultra-Small Silicon Carbide Nanoparticles , 2020, Nanomaterials.

[14]  J. Valenta,et al.  Room-Temperature Defect Qubits in Ultrasmall Nanocrystals , 2020, The journal of physical chemistry letters.

[15]  M. Yudasaka,et al.  Diameter-Dependent Degradation of 11 Types of Carbon Nanotubes: Safety Implications , 2019, ACS Applied Nano Materials.

[16]  J. Valenta,et al.  Direct Observation of Transition from Solid-State to Molecular-Like Optical Properties in Ultrasmall Silicon Carbide Nanoparticles , 2018, The Journal of Physical Chemistry C.

[17]  Á. Gali,et al.  Identification of the binding site between bovine serum albumin and ultrasmall SiC fluorescent biomarkers. , 2018, Physical chemistry chemical physics : PCCP.

[18]  V. Lysenko,et al.  Size and Surface Chemistry Tuning of Silicon Carbide Nanoparticles. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[19]  Á. Gali,et al.  Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures , 2017, Scientific Reports.

[20]  Mauro Mecozzi,et al.  Computer Assisted Examination of Infrared and Near Infrared Spectra to Assess Structural and Molecular Changes in Biological Samples Exposed to Pollutants: A Case of Study , 2017, J. Imaging.

[21]  Di Sun Effect of Zeta Potential and Particle Size on the Stability of SiO2 Nanospheres as Carrier for Ultrasound Imaging Contrast Agents , 2016 .

[22]  V. Stambouli,et al.  A silicon carbide nanowire field effect transistor for DNA detection , 2016, Nanotechnology.

[23]  Yong Yang,et al.  Tailoring of ammonia reduced graphene oxide into amine functionalized graphene quantum dots through a Hofmann rearrangement , 2016 .

[24]  Anatoli I. Popov,et al.  FTIR Studies of Silicon Carbide 1D-Nanostructures , 2015 .

[25]  M. Bloemen Immunomagnetic separation of bacteria by iron oxide nanoparticles , 2015 .

[26]  Á. Gali,et al.  Chemical Transformation of Carboxyl Groups on the Surface of Silicon Carbide Quantum Dots , 2014 .

[27]  M. Stutzmann,et al.  Organic functionalization of 3C-SiC surfaces. , 2013, ACS applied materials & interfaces.

[28]  Pál Maák,et al.  Silicon carbide quantum dots for bioimaging , 2013 .

[29]  Á. Gali,et al.  Preparation of small silicon carbide quantum dots by wet chemical etching , 2013 .

[30]  B. Masereel,et al.  Effects of SiC nanoparticles orally administered in a rat model: biodistribution, toxicity and elemental composition changes in feces and organs. , 2012, Toxicology and applied pharmacology.

[31]  Y. Leconte,et al.  In vitro cellular responses to silicon carbide nanoparticles: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects , 2012, Journal of Nanoparticle Research.

[32]  Itamar Willner,et al.  Optical molecular sensing with semiconductor quantum dots (QDs). , 2012, Chemical Society reviews.

[33]  Yong Li,et al.  Surface charges and optical characteristic of colloidal cubic SiC nanocrystals , 2011, Nanoscale research letters.

[34]  B. Tang,et al.  Hydrogen bond breakage by fluoride anions in a simple CdTe quantum dot/gold nanoparticle FRET system and its analytical application. , 2011, Chemical communications.

[35]  H. Abderrazak,et al.  Silicon Carbide: Synthesis and Properties , 2011 .

[36]  Rosario A. Gerhardt,et al.  Properties and Applications of Silicon Carbide , 2011 .

[37]  A. Mukasyan Combustion Synthesis of Silicon Carbide , 2011 .

[38]  Anatoli I. Popov,et al.  Silicon carbide nanowires: synthesis and cathodoluminescence , 2009 .

[39]  G. Ferro,et al.  Growth Mechanism of 3C-SiC Heteroepitaxial Layers on α-SiC by VLS , 2008 .

[40]  Motoyuki Iijima,et al.  Surface Modification of Silicon Carbide Nanoparticles by Azo Radical Initiators , 2008 .

[41]  Jun Zhu,et al.  Luminescent small-diameter 3C-SiC nanocrystals fabricated via a simple chemical etching method , 2007 .

[42]  Q. Liu,et al.  Shape factor of nonspherical nanoparticles , 2005 .

[43]  P. Chu,et al.  Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. , 2005, Physical review letters.

[44]  I. Hasegawa,et al.  Cleavage of the SiO¿Si(CH 3 ) 2 H bond in Si 8 O 20 [Si(CH 3 ) 2 H] 8 , 2004 .

[45]  T. Umemoto,et al.  N‐Fluoropyridinium Triflate: An Electrophilic Fluorinating Agent , 2003 .

[46]  A. Catellani,et al.  Surface-induced stacking transition at SiC(0001) , 2002 .

[47]  J. Schoonman,et al.  Laser CVD of cubic SiC nanocrystals , 2001 .

[48]  P. Bressers,et al.  Etching and electrochemistry of silicon in acidic bromine solutions , 1996 .

[49]  L. Liao,et al.  Intense blue emission from porous β‐SiC formed on C+‐implanted silicon , 1995 .

[50]  B. Jarosch,et al.  Organische Chemie I , 2019, Pocket Guide Chemie.

[51]  Shifei Kang,et al.  Effect of Zeta Potential and Particle Size on the Stability of SiO2 Nanospheres as Carrier for Ultrasound Imaging Contrast Agents , 2016 .

[52]  Stephen E. Saddow,et al.  Advances in silicon carbide processing and applications , 2004 .

[53]  R. Riedel,et al.  Progress in silicon-based non-oxide structural ceramics , 1997 .

[54]  W. Simons The Sadtler handbook of proton NMR spectra , 1978 .