Confocal imaging and local photolysis of caged compounds: Dual probes of synaptic function

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  J. Jackson,et al.  Classical Electrodynamics, 2nd Edition , 1975 .

[3]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[4]  K L Magleby,et al.  Calcium dependence of open and shut interval distributions from calcium‐activated potassium channels in cultured rat muscle. , 1983, The Journal of physiology.

[5]  D. Trentham,et al.  Properties and Uses of Photoreactive Caged Compounds , 1989 .

[6]  J. Feeney,et al.  Photolabile precursors of inositol phosphates. Preparation and properties of 1-(2-nitrophenyl)ethyl esters of myo-inositol 1,4,5-trisphosphate. , 1989, Biochemistry.

[7]  Arnold R. Kriegstein,et al.  Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex , 1989, Journal of Neuroscience Methods.

[8]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[9]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[10]  S. B. Kater,et al.  Independent regulation of calcium revealed by imaging dendritic spines , 1991, Nature.

[11]  J. Connor,et al.  Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses , 1991, Nature.

[12]  A. Konnerth,et al.  Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. Armstrong,et al.  Inhibitory synaptic currents in rat cerebellar Purkinje cells: modulation by postsynaptic depolarization. , 1992, The Journal of physiology.

[14]  K. Khodakhah,et al.  Functional heterogeneity of calcium release by inositol trisphosphate in single Purkinje neurones, cultured cerebellar astrocytes, and peripheral tissues. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E. Callaway,et al.  Photostimulation using caged glutamate reveals functional circuitry in living brain slices. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R Y Tsien,et al.  Controlling cell chemistry with caged compounds. , 1993, Annual review of physiology.

[17]  George J. Augustine,et al.  Combining patch-clamp and optical methods in brain slices , 1994, Journal of Neuroscience Methods.

[18]  K. Gee,et al.  Synthesis and Photochemistry of a New Photolabile Derivative of GABA-Neurotransmitter Release and Receptor Activation in the Microsecond Time Region , 1994 .

[19]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[20]  W. Denk,et al.  Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  G. Ellis‐Davies,et al.  Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Lawrence C. Katz,et al.  Scanning laser photostimulation: a new approach for analyzing brain circuits , 1994, Journal of Neuroscience Methods.

[23]  A. Konnerth,et al.  Patch Clamp and Calcium Imaging in Brain Slices , 1995 .

[24]  A. Konnerth,et al.  Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons , 1995, Nature.

[25]  I. Parker,et al.  Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. , 1995, The Journal of physiology.

[26]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[27]  J. Lechleiter,et al.  Optical Considerations at Ultraviolet Wavelengths in Confocal Microscopy , 1995 .