Substrate complexes of hepatitis C virus RNA polymerase (HC-J4): structural evidence for nucleotide import and de-novo initiation.

Several crystal structures of the hepatitis C virus NS5B protein (genotype-1b, strain J4) complexed with metal ions, single-stranded RNA or nucleoside-triphosphates have been determined. These complexes illustrate how conserved amino acid side-chains, together with essential structural features within the active site, control nucleotide binding and likely mediate de-novo initiation. The incoming nucleotide interacts with several basic residues from an extension on the NS5B fingers domain, a beta-hairpin from the NS5B thumb domain and the C-terminal arm. The modular, bi-partite fingers domain carries a long binding groove which guides the template towards the catalytic site. The apo-polymerase structure provides unprecedented insights into potential non-nucleoside inhibitor binding sites located between palm and thumb near motif E, which is unique to RNA polymerases and reverse transcriptases.

[1]  B. Clarke Molecular virology of hepatitis C virus. , 1997, The Journal of general virology.

[2]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[3]  S. Mishiro,et al.  The degree of variability in the amino terminal region of the E2/NS1 protein of hepatitis C virus correlates with responsiveness to interferon therapy in viremic patients , 1992, Hepatology.

[4]  E. Schiff,et al.  A randomized, double‐blind trial comparing pegylated interferon alfa‐2b to interferon alfa‐2b as initial treatment for chronic hepatitis C , 2001, Hepatology.

[5]  K. Kirkegaard,et al.  Oligomeric structures of poliovirus polymerase are important for function , 2001, The EMBO journal.

[6]  F. Rey,et al.  Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  N. Habuka,et al.  Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. , 1999, Structure.

[8]  N. Hayashi,et al.  Influence of viral quasispecies on effectiveness of interferon therapy in chronic hepatitis C patients , 1994, Hepatology.

[9]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.

[10]  E. V. Makeyev,et al.  A mechanism for initiating RNA-dependent RNA polymerization , 2001, Nature.

[11]  R. Bartenschlager,et al.  Biochemical and kinetic analyses of NS5B RNA-dependent RNA polymerase of the hepatitis C virus. , 1998, Virology.

[12]  X. Sun,et al.  De novo RNA synthesis catalyzed by HCV RNA-dependent RNA polymerase. , 2000, Biochemical and biophysical research communications.

[13]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[14]  Z. Hong,et al.  Selection of 3′-Template Bases and Initiating Nucleotides by Hepatitis C Virus NS5B RNA-Dependent RNA Polymerase , 2002, Journal of Virology.

[15]  T. Steitz,et al.  Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP , 2020, Nature.

[16]  B. Matthews Solvent content of protein crystals. , 1968, Journal of molecular biology.

[17]  R. Bartenschlager,et al.  Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity , 1997, Journal of virology.

[18]  E A Merritt,et al.  Raster3D Version 2.0. A program for photorealistic molecular graphics. , 1994, Acta crystallographica. Section D, Biological crystallography.

[19]  C. Rice,et al.  Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. , 1997, Science.

[20]  D I Stuart,et al.  Crystallographic analysis of the binding modes of thiazoloisoindolinone non-nucleoside inhibitors to HIV-1 reverse transcriptase and comparison with modeling studies. , 1999, Journal of medicinal chemistry.

[21]  A. Paul,et al.  Biochemical and Genetic Studies of the Initiation of Human Rhinovirus 2 RNA Replication: Purification and Enzymatic Analysis of the RNA-Dependent RNA Polymerase 3Dpol , 2001, Journal of Virology.

[22]  Z. Hong,et al.  De Novo Initiation of RNA Synthesis by Hepatitis C Virus Nonstructural Protein 5B Polymerase , 2000, Journal of Virology.

[23]  H. Steinhoff,et al.  Temperature-dependent equilibrium between the open and closed conformation of the p66 subunit of HIV-1 reverse transcriptase revealed by site-directed spin labelling. , 2000, Journal of molecular biology.

[24]  M. Yanagi,et al.  Transcripts of a chimeric cDNA clone of hepatitis C virus genotype 1b are infectious in vivo. , 1998, Virology.

[25]  T. Steitz,et al.  Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. , 1993, Biochemistry.

[26]  J. Hansen,et al.  Structure of the RNA-dependent RNA polymerase of poliovirus. , 1997, Structure.

[27]  M. James,et al.  Crystal Structures of Active and Inactive Conformations of a Caliciviral RNA-dependent RNA Polymerase* , 2002, The Journal of Biological Chemistry.

[28]  D. Bacon,et al.  A fast algorithm for rendering space-filling molecule pictures , 1988 .

[29]  J. Arnold,et al.  Poliovirus RNA-dependent RNA polymerase (3D(pol)). Divalent cation modulation of primer, template, and nucleotide selection. , 1999, The Journal of biological chemistry.

[30]  R. Francesco,et al.  Identification and properties of the RNA‐dependent RNA polymerase of hepatitis C virus. , 1996, The EMBO journal.

[31]  J. Adams,et al.  Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. , 1990, Science.

[32]  D. Hall,et al.  Only a small fraction of purified hepatitis C RNA-dependent RNA polymerase is catalytically competent: implications for viral replication and in vitro assays. , 2000, Biochemistry.

[33]  R. Bartenschlager Candidate targets for hepatitis C virus-specific antiviral therapy. , 1997, Intervirology.

[34]  S. Goff,et al.  Retroviral reverse transcriptase: synthesis, structure, and function. , 1990, Journal of acquired immune deficiency syndromes.

[35]  Samuel H. Wilson,et al.  Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. , 1997, Biochemistry.

[36]  T. Kodama,et al.  Measurement of HCV RdRp activity with C-terminal 21 aa truncated NS5b protein: optimization of assay conditions. , 2002, Hepatology research : the official journal of the Japan Society of Hepatology.

[37]  K. Ishii,et al.  Expression of hepatitis C virus NS5B protein: Characterization of its RNA polymerase activity and RNA binding , 1999, Hepatology.

[38]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[39]  D W Rodgers,et al.  The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Hamatake,et al.  De Novo Initiation of RNA Synthesis by the RNA-Dependent RNA Polymerase (NS5B) of Hepatitis C Virus , 2000, Journal of Virology.

[41]  J Navaza,et al.  Implementation of molecular replacement in AMoRe. , 2001, Acta crystallographica. Section D, Biological crystallography.

[42]  D. Stammers,et al.  Closing in on HIV drug resistance , 1999, Nature Structural Biology.

[43]  M. Lai,et al.  A Recombinant Hepatitis C Virus RNA-Dependent RNA Polymerase Capable of Copying the Full-Length Viral RNA , 1999, Journal of Virology.

[44]  H. Ago Crystal structure of the RNA-dependent RNA polymerase of hepatitis Cvirus , 1999 .

[45]  Charles A. Lesburg,et al.  Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site , 1999, Nature Structural Biology.

[46]  H. T. Head,et al.  Global surveillance and control of hepatitis C , 1999 .

[47]  A. Paul,et al.  Biochemical and Genetic Studies of the Initiation of Human Rhinovirus 2 RNA Replication: Identification of a cis-Replicating Element in the Coding Sequence of 2Apro , 2001, Journal of Virology.

[48]  Z. Hong,et al.  Characterization of Soluble Hepatitis C Virus RNA-Dependent RNA Polymerase Expressed in Escherichia coli , 1999, Journal of Virology.

[49]  T. Steitz,et al.  Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. , 1992, Science.

[50]  T. Steitz,et al.  Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[51]  E. Wimmer,et al.  A protein covalently linked to poliovirus genome RNA. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. Paul,et al.  Identification of an RNA Hairpin in Poliovirus RNA That Serves as the Primary Template in the In Vitro Uridylylation of VPg , 2000, Journal of Virology.

[53]  T. Steitz,et al.  Comparison of three different crystal forms shows HIV-1 reverse transcriptase displays an internal swivel motion. , 1994, Structure.

[54]  Yvonne Jones,et al.  Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors , 1995, Nature Structural Biology.

[55]  R. Löwer,et al.  Rec (Formerly Corf) Function Requires Interaction with a Complex, Folded RNA Structure within Its Responsive Element rather than Binding to a Discrete Specific Binding Site , 2001, Journal of Virology.

[56]  E. Koonin The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. , 1991, The Journal of general virology.

[57]  M. Houghton,et al.  Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. , 1989, Science.

[58]  F. Rey,et al.  Structural Analysis of the Hepatitis C Virus RNA Polymerase in Complex with Ribonucleotides , 2002, Journal of Virology.

[59]  H. Mitsuya,et al.  Molecular targets for AIDS therapy. , 1990, Science.

[60]  David Baltimore,et al.  A detailed model of reverse transcription and tests of crucial aspects , 1979, Cell.

[61]  S. Kaneko,et al.  RNA-dependent RNA Polymerase Activity of the Soluble Recombinant Hepatitis C Virus NS5B Protein Truncated at the C-terminal Region* , 1998, The Journal of Biological Chemistry.