Mapping the human connectome at multiple scales with diffusion spectrum MRI

The global structural connectivity of the brain, the human connectome, is now accessible at millimeter scale with the use of MRI. In this paper, we describe an approach to map the connectome by constructing normalized whole-brain structural connection matrices derived from diffusion MRI tractography at 5 different scales. Using a template-based approach to match cortical landmarks of different subjects, we propose a robust method that allows (a) the selection of identical cortical regions of interest of desired size and location in different subjects with identification of the associated fiber tracts (b) straightforward construction and interpretation of anatomically organized whole-brain connection matrices and (c) statistical inter-subject comparison of brain connectivity at various scales. The fully automated post-processing steps necessary to build such matrices are detailed in this paper. Extensive validation tests are performed to assess the reproducibility of the method in a group of 5 healthy subjects and its reliability is as well considerably discussed in a group of 20 healthy subjects.

[1]  Olaf Sporns,et al.  MR connectomics: Principles and challenges , 2010, Journal of Neuroscience Methods.

[2]  Desmond J. Higham,et al.  Connectivity-based parcellation of human cortex using diffusion MRI: Establishing reproducibility, validity and observer independence in BA 44/45 and SMA/pre-SMA , 2007, NeuroImage.

[3]  M P Young,et al.  Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  Lester Melie-García,et al.  Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory , 2008, NeuroImage.

[5]  P. Hagmann From diffusion MRI to brain connectomics , 2005 .

[6]  Edward T. Bullmore,et al.  Whole-brain anatomical networks: Does the choice of nodes matter? , 2010, NeuroImage.

[7]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[8]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[9]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[10]  F. Gall,et al.  Anatomie et physiologie du système nerveux en général et du cerveau en particulier; avec des observations sur la possibilité de reconnaître plusieurs dispositions intellectuelles et morales de l’homme et des animaux par la configuration de leur têtes (Vol. 3) , 1810 .

[11]  Marcus Kaiser,et al.  Clustered organization of cortical connectivity , 2007, Neuroinformatics.

[12]  Gustavo Deco,et al.  The Brain Connectivity Workshops: Moving the frontiers of computational systems neuroscience , 2008, NeuroImage.

[13]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[14]  P. Thiran,et al.  Mapping Human Whole-Brain Structural Networks with Diffusion MRI , 2007, PloS one.

[15]  Alan C. Evans,et al.  Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. , 2009, Cerebral cortex.

[16]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Lateral Premotor Cortex Identifies Dorsal and Ventral Subregions with Anatomical and Functional Specializations , 2007, The Journal of Neuroscience.

[17]  Timothy Edward John Behrens,et al.  Relating connectional architecture to grey matter function using diffusion imaging , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[20]  Lester Melie-García,et al.  Characterizing brain anatomical connections using diffusion weighted MRI and graph theory , 2007, NeuroImage.

[21]  Jun Li,et al.  Brain Anatomical Network and Intelligence , 2009, NeuroImage.

[22]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[23]  F Aboitiz,et al.  Sexual dimorphism in interhemispheric relations: anatomical-behavioral convergence. , 1995, Biological research.

[24]  Danielle S. Bassett,et al.  Conserved and variable architecture of human white matter connectivity , 2011, NeuroImage.

[25]  A. Beckett,et al.  AKUFO AND IBARAPA. , 1965, Lancet.

[26]  J. Thiran,et al.  Diffusion Spectrum Imaging tractography in complex cerebral white matter: an investigation of the centrum semiovale , 2004 .

[27]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[28]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[29]  Edward T. Bullmore,et al.  SYSTEMS NEUROSCIENCE Original Research Article , 2009 .

[30]  S. Clarke,et al.  Thalamic projections of the fusiform gyrus in man , 1999, The European journal of neuroscience.

[31]  Jean-Philippe Thiran,et al.  DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection , 2003, NeuroImage.

[32]  Koenraad Van Leemput,et al.  Automated model-based tissue classification of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[33]  Abraham Z. Snyder,et al.  A default mode of brain function: A brief history of an evolving idea , 2007, NeuroImage.

[34]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[35]  Reto Meuli,et al.  Adaptive Strategy for the Statistical Analysis of Connectomes , 2011, PloS one.

[36]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[37]  Sterling C. Johnson,et al.  Application of Brodmann's area templates for ROI selection in white matter tractography studies , 2006, NeuroImage.

[38]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[39]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[40]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[41]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[42]  Liza Gross,et al.  From Structure to Function: Mapping the Connection Matrix of the Human Brain , 2008, PLoS biology.

[43]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[44]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[45]  Thomas Schaffner,et al.  Cortical regions contributing to the anterior commissure in man , 1999, Experimental Brain Research.