Heat Kernel Comparison on Alexandrov Spaces with Curvature Bounded Below

In this paper the comparison result for the heat kernel on Riemannian manifolds with lower Ricci curvature bound by Cheeger and Yau (1981) is extended to locally compact path metric spaces (X,d) with lower curvature bound in the sense of Alexandrov and with sufficiently fast asymptotic decay of the volume of small geodesic balls. As corollaries we recover Varadhan's short time asymptotic formula for the heat kernel (1967) and Cheng's eigenvalue comparison theorem (1975). Finally, we derive an integral inequality for the distance process of a Brownian Motion on (X,d) resembling earlier results in the smooth setting by Debiard, Geavau and Mazet (1975).

[1]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[2]  Stephanie Halbeisen On tangent cones of Alexandrov spaces with curvature bounded below , 2000 .

[3]  K. Shiohama An Introduction to the geometry of Alexandrov spaces , 1993 .

[4]  S. A. Sherman,et al.  Providence , 1906 .

[5]  J. Heinonen Lectures on Analysis on Metric Spaces , 2000 .

[6]  Y. Otsu,et al.  The Riemannian structure of Alexandrov spaces , 1994 .

[7]  B. M. Fulk MATH , 1992 .

[8]  T. Shioya,et al.  Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces , 2001 .

[9]  Shing-Tung Yau,et al.  A lower bound for the heat kernel , 1981 .

[10]  Karl-Theodor Sturm,et al.  Diffusion processes and heat kernels on metric spaces , 1998 .

[11]  T. Shioya,et al.  Sobolev and Dirichlet spaces over maps between metric spaces , 2003 .

[12]  A Regularity Theorem for Alexandrov Spaces , 1993 .

[13]  P. Parseval,et al.  Structure of the { 001 } talc surface as seen by atomic force 1 microscopy : Comparison with X-ray and electron diffraction 2 results 3 4 , 2006 .

[14]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[15]  Shiu-yuen Cheng,et al.  Eigenvalue comparison theorems and its geometric applications , 1975 .

[16]  Takao Yamaguchi A CONVERGENCE THEOREM IN THE GEOMETRY OF ALEXANDROV SPACES , 1996 .

[17]  Karl-Theodor Sturm,et al.  Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations , 1995 .

[18]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[19]  Verzekeren Naar Sparen,et al.  Cambridge , 1969, Humphrey Burton: In My Own Time.

[20]  E. Mazet,et al.  Théorèmes de Comparaison en Géométrie Riemannienne , 1976 .

[21]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[22]  A. Petrunin Applications of Quasigeodesics and Gradient Curves , 1997 .

[23]  Karl-Theodor Sturm,et al.  Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality , 1996 .

[24]  Yu. D. Burago,et al.  A.D. Alexandrov spaces with curvature bounded below , 1992 .

[25]  On Generalized Measure Contraction Property and Energy Functionals over Lipschitz Maps , 2001 .

[26]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .