Variational Auto-encoder Based Bayesian Poisson Tensor Factorization for Sparse and Imbalanced Count Data

Non-negative tensor factorization models enable predictive analysis on count data. Among them, Bayesian Poisson-Gamma models are able to derive full posterior distributions of latent factors and are less sensitive to sparse count data. However, current inference methods for these Bayesian models adopt restricted update rules for the posterior parameters. They also fail to share the update information to better cope with the data sparsity. Moreover, these models are not endowed with a component that handles the imbalance in count data values. In this paper, we propose a novel variational auto-encoder framework called VAE-BPTF which addresses the above issues. It uses multi-layer perceptron networks to encode and share complex update information. The encoded information is then reweighted per data instance to penalize common data values before aggregated to compute the posterior parameters for the latent factors. Under synthetic data evaluation, VAE-BPTF tended to recover the right number of latent factors and posterior parameter values. It also outperformed current models in both reconstruction errors and latent factor (semantic) coherence across five real-world datasets. Furthermore, the latent factors inferred by VAE-BPTF are perceived to be meaningful and coherent under a qualitative analysis.

[1]  Tamir Hazan,et al.  Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.

[2]  David A. Knowles Stochastic gradient variational Bayes for gamma approximating distributions , 2015, 1509.01631.

[3]  Tat-Seng Chua,et al.  Neural Collaborative Filtering , 2017, WWW.

[4]  Donghyun Kim,et al.  Convolutional Matrix Factorization for Document Context-Aware Recommendation , 2016, RecSys.

[5]  David M. Blei,et al.  Scalable Recommendation with Hierarchical Poisson Factorization , 2015, UAI.

[6]  Michael P. Friedlander,et al.  Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..

[7]  Matthew Harding,et al.  Scalable Bayesian Non-negative Tensor Factorization for Massive Count Data , 2015, ECML/PKDD.

[8]  Can Wang,et al.  Neural Personalized Ranking via Poisson Factor Model for Item Recommendation , 2019, Complex..

[9]  David M. Blei,et al.  Bayesian Poisson Tensor Factorization for Inferring Multilateral Relations from Sparse Dyadic Event Counts , 2015, KDD.

[10]  Trevor F. Cox,et al.  Metric multidimensional scaling , 2000 .

[11]  Yan Liu,et al.  CoSTCo: A Neural Tensor Completion Model for Sparse Tensors , 2019, KDD.

[12]  Mikkel N. Schmidt,et al.  Probabilistic non-negative tensor factorization using Markov chain Monte Carlo , 2009, 2009 17th European Signal Processing Conference.

[13]  Yisong Yue,et al.  Factorized Variational Autoencoders for Modeling Audience Reactions to Movies , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Scott Sanner,et al.  AutoRec: Autoencoders Meet Collaborative Filtering , 2015, WWW.

[15]  Martin Jankowiak,et al.  Pathwise Derivatives Beyond the Reparameterization Trick , 2018, ICML.

[16]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[17]  Tamara G. Kolda,et al.  On Tensors, Sparsity, and Nonnegative Factorizations , 2011, SIAM J. Matrix Anal. Appl..

[18]  Nitesh V. Chawla,et al.  Neural Tensor Factorization for Temporal Interaction Learning , 2019, WSDM.

[19]  Lina Yao,et al.  Deep Learning Based Recommender System , 2017, ACM Comput. Surv..

[20]  Shujian Huang,et al.  Deep Matrix Factorization Models for Recommender Systems , 2017, IJCAI.

[21]  Mark Stevenson,et al.  Evaluating Topic Coherence Using Distributional Semantics , 2013, IWCS.

[22]  Xiaoyu Du,et al.  Outer Product-based Neural Collaborative Filtering , 2018, IJCAI.

[23]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[24]  Morten Mørup,et al.  VARIATIONAL BAYESIAN PARTIALLY OBSERVED NON-NEGATIVE TENSOR FACTORIZATION , 2018, 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP).

[25]  Max Welling,et al.  Positive tensor factorization , 2001, Pattern Recognit. Lett..

[26]  David B. Dunson,et al.  Beta-Negative Binomial Process and Poisson Factor Analysis , 2011, AISTATS.

[27]  Alexandros Karatzoglou,et al.  Session-based Recommendations with Recurrent Neural Networks , 2015, ICLR.

[28]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[29]  John Riedl,et al.  Learning preferences of new users in recommender systems: an information theoretic approach , 2008, SKDD.

[30]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[31]  M. Friedlander,et al.  Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..

[32]  Hyung Jun Ahn,et al.  A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem , 2008, Inf. Sci..

[33]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[34]  Swapnil Mishra,et al.  Experiments with non-parametric topic models , 2014, KDD.

[35]  Shakir Mohamed,et al.  Implicit Reparameterization Gradients , 2018, NeurIPS.

[36]  Sheng Li,et al.  Deep Collaborative Filtering via Marginalized Denoising Auto-encoder , 2015, CIKM.

[37]  David M. Blei,et al.  Bayesian Poisson Tucker Decomposition for Learning the Structure of International Relations , 2016, ICML.