Guarding a Polygon Without Losing Touch

We study the classical Art Gallery Problem first proposed by Klee in 1973 from a mobile multi-agents perspective. Specifically, we require an optimally small number of agents (also called guards) to navigate and position themselves in the interior of an unknown simple polygon with n vertices such that the collective view of all the agents covers the polygon.

[1]  Gregorio Hernández-Peñalver Controlling Guards , 1994, CCCG.

[2]  F. Bullo,et al.  Visibility-based multi-agent deployment in orthogonal environments , 2007, 2007 American Control Conference.

[3]  Sudebkumar Prasant Pal,et al.  Constant Approximation Algorithms for Guarding Simple Polygons using Vertex Guards , 2017, ArXiv.

[4]  Subir Kumar Ghosh,et al.  Approximation algorithms for art gallery problems in polygons , 2010, Discret. Appl. Math..

[5]  Richard C. T. Lee,et al.  An Optimal Algorithm to Solve the Minimum Weakly Cooperative Guards Problem for 1-Spiral Polygons , 1994, Inf. Process. Lett..

[6]  Val Pinciu,et al.  A Coloring Algorithm for Finding Connected Guards in Art Galleries , 2003, DMTCS.

[7]  M. Lefsky,et al.  Comparison and integration of lidar and photogrammetric point clouds for mapping pre-fire forest structure , 2019, Remote Sensing of Environment.

[8]  Hwan Pyo Moon,et al.  MATHEMATICAL THEORY OF MEDIAL AXIS TRANSFORM , 1997 .

[9]  Francesco Bullo,et al.  Motion Coordination for Mobile Robotic Networks With Visibility Sensors , 2007 .

[10]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[11]  Joseph S. B. Mitchell,et al.  Exploring and Triangulating a Region by a Swarm of Robots , 2011, APPROX-RANDOM.

[12]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[13]  F. Bullo,et al.  Distributed deployment of asynchronous guards in art galleries , 2006, 2006 American Control Conference.

[14]  D. T. Lee,et al.  Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.

[15]  Paul F. McManamon,et al.  LiDAR Technologies and Systems , 2019 .

[16]  James S. Aber,et al.  Principles of Photogrammetry , 2019, Small-Format Aerial Photography and UAS Imagery.

[17]  V. Chvátal A combinatorial theorem in plane geometry , 1975 .

[18]  Steve Fisk,et al.  A short proof of Chvátal's Watchman Theorem , 1978, J. Comb. Theory, Ser. B.

[19]  Yann Disser,et al.  A General Lower Bound for Collaborative Tree Exploration , 2016, SIROCCO.

[20]  Stephan Eidenbenz,et al.  Inapproximability Results for Guarding Polygons and Terrains , 2001, Algorithmica.

[21]  Val Pinciu,et al.  Orthogonal Art Galleries with Holes: A Coloring Proof of Aggarwal's Theorem , 2006, Electron. J. Comb..

[22]  T. C. Shermer,et al.  Recent results in art galleries (geometry) , 1992, Proc. IEEE.

[23]  Francesco Bullo,et al.  Multi‐agent deployment for visibility coverage in polygonal environments with holes , 2010, ArXiv.

[24]  Michael T. Goodrich,et al.  Triangulating a Polygon in Parallel , 1989, J. Algorithms.

[25]  Richard C. T. Lee,et al.  The Minimum Cooperative Guards Problem on K-spiral Polygons , 1993, CCCG.

[26]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[27]  Jorge Urrutia,et al.  Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.

[28]  Val Pinciu,et al.  Art gallery theorems for guarded guards , 2003, Comput. Geom..

[29]  Subir Kumar Ghosh,et al.  Visibility Algorithms in the Plane , 2007 .