The use of alternation and recurrences in two-step quasi-Newton methods
暂无分享,去创建一个
[1] R. Fletcher. Practical Methods of Optimization , 1988 .
[2] R. Schnabel,et al. Least Change Secant Updates for Quasi-Newton Methods , 1978 .
[3] D. Goldfarb. A family of variable-metric methods derived by variational means , 1970 .
[4] John A. Ford. Implicit updates in multistep quasi-Newton methods , 2001 .
[5] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[6] P. Toint,et al. On Large Scale Nonlinear Least Squares Calculations , 1987 .
[7] Issam A. R. Moghrabi,et al. Alternative parameter choices for multi-step Quasi-Newton methods , 1993 .
[8] D. F. Shanno,et al. Matrix conditioning and nonlinear optimization , 1978, Math. Program..
[9] Issam A. R. Moghrabi,et al. Alternating multi-step quasi-Newton methods for unconstrained optimization , 1997 .
[10] Jorge J. Moré,et al. Testing Unconstrained Optimization Software , 1981, TOMS.
[11] Issam A. R. Moghrabi,et al. Minimum curvature multistep quasi-Newton methods , 1996 .
[12] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .
[13] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[14] Issam A. R. Moghrabi,et al. Multi-step quasi-Newton methods for optimization , 1994 .
[15] P. Toint,et al. Testing a class of methods for solving minimization problems with simple bounds on the variables , 1988 .
[16] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .