Nanoscale domain wall devices with magnetic tunnel junction read and write

[1]  D. Tsvetanova,et al.  All-Electrical Control of Scaled Spin Logic Devices Based on Domain Wall Motion , 2021, IEEE Transactions on Electron Devices.

[2]  D. Tsvetanova,et al.  All-electrical control of scaled spin logic devices based on domain wall motion , 2020, 2020 IEEE International Electron Devices Meeting (IEDM).

[3]  B. Diény,et al.  Review on spintronics: Principles and device applications , 2020, Journal of Magnetism and Magnetic Materials.

[4]  Christoph Adelmann,et al.  Opportunities and challenges for spintronics in the microelectronics industry , 2020, Nature Electronics.

[5]  Chirag Garg,et al.  Magnetic Racetrack Memory: From Physics to the Cusp of Applications Within a Decade , 2020, Proceedings of the IEEE.

[6]  B. Diény,et al.  Single-shot all-optical switching of magnetization in Tb/Co multilayer-based electrodes , 2020, Scientific Reports.

[7]  M. Stiles,et al.  Neuromorphic spintronics , 2020, Nature Electronics.

[8]  Simone Finizio,et al.  Current-driven magnetic domain-wall logic , 2020, Nature.

[9]  C. Wiegand,et al.  2 MB Array-Level Demonstration of STT-MRAM Process and Performance Towards L4 Cache Applications , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[10]  H. Ohno,et al.  Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles , 2019, Nature Communications.

[11]  Sumit Dutta,et al.  Magnetic domain wall based synaptic and activation function generator for neuromorphic accelerators , 2019, Nano letters.

[12]  A. Fert,et al.  Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets , 2019, Nature Materials.

[13]  C. Adelmann,et al.  Reconfigurable submicrometer spin-wave majority gate with electrical transducers , 2019, Science advances.

[14]  Wesley H. Brigner,et al.  SPICE-Only Model for Spin-Transfer Torque Domain Wall MTJ Logic , 2019, IEEE Transactions on Electron Devices.

[15]  Kun Yue,et al.  A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors , 2019, Science Advances.

[16]  C. Ross,et al.  Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets , 2019, Nature Nanotechnology.

[17]  D. Mocuta,et al.  Scaled spintronic logic device based on domain wall motion in magnetically interconnected tunnel junctions , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[18]  G. Kar,et al.  Size dependence of spin-torque switching in perpendicular magnetic tunnel junctions , 2018, Applied Physics Letters.

[19]  B. Diény,et al.  A highly thermally stable sub-20 nm magnetic random-access memory based on perpendicular shape anisotropy. , 2018, Nanoscale.

[20]  M. Stiles,et al.  Synthetic antiferromagnetic spintronics , 2018, Nature Physics.

[21]  J. Sinova,et al.  Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems , 2018, Reviews of Modern Physics.

[22]  Christopher J. Wilson,et al.  Fabrication of magnetic tunnel junctions connected through a continuous free layer to enable spin logic devices , 2017, 1711.03609.

[23]  G. Kar,et al.  Control of Interlayer Exchange Coupling and Its Impact on Spin–Torque Switching of Hybrid Free Layers With Perpendicular Magnetic Anisotropy , 2017, IEEE Transactions on Magnetics.

[24]  T. Ono,et al.  Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. , 2017, Nature materials.

[25]  A. Fert,et al.  Room-Temperature Current-Induced Generation and Motion of sub-100 nm Skyrmions. , 2017, Nano letters.

[26]  Hui Li,et al.  Effects of arm swing on particle trajectories in HDD using CFD dynamic mesh method , 2016, 2016 Asia-Pacific Magnetic Recording Conference Digest (APMRC).

[27]  H. Ohno,et al.  Thermal stability of a magnetic domain wall in nanowires , 2015 .

[28]  S. Parkin,et al.  Domain-wall velocities of up to 750 m s(-1) driven by exchange-coupling torque in synthetic antiferromagnets. , 2015, Nature nanotechnology.

[29]  T. Devolder,et al.  Low depinning fields in Ta-CoFeB-MgO ultrathin films with perpendicular magnetic anisotropy , 2013 .

[30]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[31]  Thibaut Devolder,et al.  Damping of CoxFe80−xB20 ultrathin films with perpendicular magnetic anisotropy , 2013 .

[32]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[33]  Hjm Henk Swagten,et al.  Domain wall depinning governed by the spin Hall effect. , 2012, Nature materials.

[34]  L. Buda-Prejbeanu,et al.  Fast current-induced domain-wall motion controlled by the Rashba effect. , 2011, Nature materials.

[35]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[36]  T. Ghani,et al.  Proposal of a Spin Torque Majority Gate Logic , 2010, IEEE Electron Device Letters.

[37]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[38]  B. Diény,et al.  Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. , 2007, Physical review letters.

[39]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[40]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .