Admittivity imaging from multi-frequency micro-electrical impedance tomography

The aim of this paper is to propose an optimal control optimization algorithm for reconstructing admittivity distributions (i.e., both conductivity and permittivity) from multi-frequency micro-electrical impedance tomography. A convergent and stable optimization scheme is shown to be obtainable from multi-frequency data. The results of this paper have potential applicability in cancer imaging, cell culturing and differentiation, food sciences, and biotechnology.

[1]  C. Lo,et al.  Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. , 1995, Biophysical journal.

[2]  P. Linderholm,et al.  Microelectrical impedance tomography for biophysical characterization of thin film biomaterials , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[3]  G. Alberti On multiple frequency power density measurements , 2013, 1301.1508.

[4]  M. Giaquinta,et al.  An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs , 2005 .

[5]  S. Bhansali,et al.  Cell culture monitoring by impedance mapping using a multielectrode scanning impedance spectroscopy system (CellMap) , 2008, Physiological measurement.

[6]  Laurent Seppecher,et al.  A mathematical and numerical framework for ultrasonically-induced Lorentz force electrical impedance tomography☆ , 2014 .

[7]  Christopher L. Davey,et al.  The dielectric properties of biological cells at radiofrequencies : Applications in biotechnology , 1999 .

[8]  I. Giaever,et al.  Electric measurements can be used to monitor the attachment and spreading of cells in tissue culture. , 1991, BioTechniques.

[9]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[10]  李幼升,et al.  Ph , 1989 .

[11]  M. Hanke,et al.  A convergence analysis of the Landweber iteration for nonlinear ill-posed problems , 1995 .

[12]  Eung Je Woo,et al.  Magnetic Resonance Electrical Impedance Tomography (MREIT) , 2011, SIAM Rev..

[13]  On local non-zero constraints in PDE with analytic coefficients , 2015, 1501.01449.

[14]  Michael C. McAlpine,et al.  Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides , 2010, Proceedings of the National Academy of Sciences.

[15]  A. Angersbach,et al.  Effects of pulsed electric fields on cell membranes in real food systems , 2000 .

[16]  Josselin Garnier,et al.  Resolution and stability analysis in acousto-electric imaging , 2012 .

[17]  E. Woo,et al.  Nonlinear Inverse Problems in Imaging , 2012 .

[18]  H. Ammari,et al.  Multi-frequency acousto-electromagnetic tomography , 2014, 1410.4119.

[19]  S. Bhansali,et al.  A planar micro-sensor for bio-impedance measurements , 2005 .

[20]  Otmar Scherzer,et al.  Impedance-Acoustic Tomography , 2008, SIAM J. Appl. Math..

[21]  C. Lo,et al.  Monitoring motion of confluent cells in tissue culture. , 1993, Experimental cell research.

[22]  I. Giaever,et al.  Micromotion of mammalian cells measured electrically. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Giovanni S. Alberti,et al.  Enforcing Local Non-Zero Constraints in PDEs and Applications to Hybrid Imaging Problems , 2014, 1406.3248.

[24]  L. Landweber An iteration formula for Fredholm integral equations of the first kind , 1951 .

[25]  V. Maz'ya,et al.  Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems , 2012 .

[26]  Yves Capdeboscq On a counter-example to quantitative Jacobian bounds , 2015 .

[27]  Josselin Garnier,et al.  Quantitative thermo-acoustic imaging: An exact reconstruction formula , 2012, 1201.0619.

[28]  D. Miklavčič,et al.  ELECTRIC PROPERTIES OF TISSUES , 2006 .

[29]  C.R. Keese,et al.  A biosensor that monitors cell morphology with electrical fields , 1994, IEEE Engineering in Medicine and Biology Magazine.

[30]  Rolando Magnanini,et al.  The index of isolated critical points and solutions of elliptic equations in the plane , 1992 .

[31]  Graeme W. Milton,et al.  Change of Sign of the Corrector’s Determinant for Homogenization in Three-Dimensional Conductivity , 2004 .

[32]  Patricia Bauman,et al.  Univalent solutions of an elliptic system of partial differential equations arising in homogenization , 2001 .

[33]  Habib Ammari,et al.  Mathematical models and reconstruction methods in magneto-acoustic imaging , 2009, European Journal of Applied Mathematics.

[34]  Faouzi Triki,et al.  Uniqueness and stability for the inverse medium problem with internal data , 2010 .

[35]  Analytic functions in Banach spaces , 1965 .

[36]  Habib Ammari,et al.  An Introduction to Mathematics of Emerging Biomedical Imaging , 2008 .

[37]  Sverre Grimnes,et al.  INTERFACE PHENOMENA AND DIELECTRIC PROPERTIES OF BIOLOGICAL TISSUE , 2002 .

[38]  O. Scherzer,et al.  Hybrid tomography for conductivity imaging , 2011, 1112.2958.

[39]  Jin Keun Seo,et al.  Effective Admittivity of Biological Tissues as a Coefficient of Elliptic PDE , 2013, Comput. Math. Methods Medicine.

[40]  H. Schwan Mechanisms responsible for electrical properties of tissues and cell suspensions. , 1993, Medical progress through technology.

[41]  Josselin Garnier,et al.  Reconstruction of a Piecewise Smooth Absorption Coefficient by an Acousto-Optic Process , 2012, 1206.1412.

[42]  Liju Yang,et al.  Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. , 2008, Talanta.

[43]  Otmar Scherzer,et al.  Local analysis of inverse problems: Hölder stability and iterative reconstruction , 2011, 1108.3570.

[44]  Habib Ammari,et al.  Microwave Imaging by Elastic Deformation , 2011, SIAM J. Appl. Math..

[45]  G. Alessandrini,et al.  Univalent σ-Harmonic Mappings , 2001 .

[46]  Eung Je Woo,et al.  Mathematical framework for a new microscopic electrical impedance tomography system , 2011 .

[47]  Ya-Zhe Chen,et al.  Second Order Elliptic Equations and Elliptic Systems , 1998 .

[48]  Chun-Min Lo,et al.  A micro-electrode array biosensor for impedance spectroscopy of human umbilical vein endothelial cells , 2006 .

[49]  Eric Bonnetier,et al.  Electrical Impedance Tomography by Elastic Deformation , 2008, SIAM J. Appl. Math..

[50]  G. Alberti Absence of Critical Points of Solutions to the Helmholtz Equation in 3D , 2015, 1507.00647.

[51]  立川 篤,et al.  M. Giaquinta and L. Martinazzi: An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Appunti. Sc. Norm. Super. Pisa (N.S.)., 2, Edizioni della Normale, 2005年,xii + 302ページ. , 2008 .

[52]  J. Wegener,et al.  Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. , 2000, Experimental cell research.

[53]  Ohin Kwon,et al.  Equipotential line method for magnetic resonance electrical impedance tomography , 2002 .

[54]  Louis Nirenberg,et al.  Estimates for elliptic systems from composite material , 2003 .

[55]  Josselin Garnier,et al.  Spectroscopic imaging of a dilute cell suspension , 2013, 1310.1292.

[56]  G. Alessandrini,et al.  Quantitative estimates on Jacobians for hybrid inverse problems , 2015, 1501.03005.

[57]  Y. Feldman,et al.  Time domain dielectric spectroscopy study of human cells. II. Normal and malignant white blood cells. , 1999, Biochimica et biophysica acta.