Arabidopsis calcium‐binding mitochondrial carrier proteins as potential facilitators of mitochondrial ATP‐import and plastid SAM‐import

[1]  A. Fernie,et al.  Evolution, structure and function of mitochondrial carriers: a review with new insights. , 2011, The Plant journal : for cell and molecular biology.

[2]  A. Robinson,et al.  Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[4]  A. Lewit-Bentley,et al.  EF-hand calcium-binding proteins. , 2000, Current opinion in structural biology.

[5]  G. Borisy,et al.  Transgenic AEQUORIN Reveals Organ-Specific Cytosolic Ca2+ Responses to Anoxia in Arabidopsis thaliana Seedlings , 1996, Plant physiology.

[6]  R. Krämer,et al.  The Phosphate Carrier from Yeast Mitochondria , 1998, The Journal of Biological Chemistry.

[7]  M. Zanor,et al.  Molecular Identification of an Arabidopsis S-Adenosylmethionine Transporter. Analysis of Organ Distribution, Bacterial Expression, Reconstitution into Liposomes, and Functional Characterization1 , 2006, Plant Physiology.

[8]  A. Weber,et al.  Peroxisomal ATP Import Is Essential for Seedling Development in Arabidopsis thaliana[W] , 2008, The Plant Cell Online.

[9]  A. Weber,et al.  Arabidopsis SAMT1 Defines a Plastid Transporter Regulating Plastid Biogenesis and Plant Development[W] , 2006, The Plant Cell Online.

[10]  C. Johnson,et al.  Dark-Stimulated Calcium Ion Fluxes in the Chloroplast Stroma and Cytosol Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.000653. , 2002, The Plant Cell Online.

[11]  H. Wohlrab Homodimeric intrinsic membrane proteins. Identification and modulation of interactions between mitochondrial transporter (carrier) subunits. , 2010, Biochemical and biophysical research communications.

[12]  A. Reddy,et al.  KIC, a Novel Ca2+ Binding Protein with One EF-Hand Motif, Interacts with a Microtubule Motor Protein and Regulates Trichome Morphogenesis Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.016600. , 2004, The Plant Cell Online.

[13]  Johanna Bussemer,et al.  Calcium regulation in endosymbiotic organelles of plants , 2009, Plant signaling & behavior.

[14]  W. Frommer,et al.  ARAMEMNON, a Novel Database for Arabidopsis Integral Membrane Proteins1 , 2003, Plant Physiology.

[15]  P. Zimmermann,et al.  GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox1[w] , 2004, Plant Physiology.

[16]  K. Apel,et al.  FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[18]  M. Hodges,et al.  The growing family of mitochondrial carriers in Arabidopsis. , 2004, Trends in plant science.

[19]  D. Wood,et al.  High Level Expression and Characterization of the Mitochondrial Citrate Transport Protein from the Yeast Saccharomyces cerevisiae(*) , 1995, The Journal of Biological Chemistry.

[20]  Roman G. Bayer,et al.  Supporting Information for Proteomics , 2010 .

[21]  A. Gomes,et al.  Characterization of tescalcin, a novel EF-hand protein with a single Ca2+-binding site: metal-binding properties, localization in tissues and cells, and effect on calcineurin. , 2003, Biochemistry.

[22]  S. Ebashi,et al.  Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. , 1984, Journal of biochemistry.

[23]  Bush,et al.  Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells , 1998, Plant physiology.

[24]  A. Weber,et al.  Making the connections – The crucial role of metabolite transporters at the interface between chloroplast and cytosol , 2007, FEBS letters.

[25]  Kenji Hashimoto,et al.  Calcium Signals: The Lead Currency of Plant Information Processing , 2010, Plant Cell.

[26]  F. M. Lasorsa,et al.  Identification of the Mitochondrial ATP-Mg/Pi Transporter , 2004, Journal of Biological Chemistry.

[27]  H. Heldt,et al.  Unspecific permeation and specific exchange of adenine nucleotides in liver mitochondria. , 1965, Biochimica et biophysica acta.

[28]  H. Scheller,et al.  Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana , 2008, The FEBS journal.

[29]  H+-Coupled Sugar Transporter, an Initiator of Sugar-induced Ca2+-signaling in Plant Cells , 2005, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[30]  A. Robinson,et al.  Coupling of proton and substrate translocation in the transport cycle of mitochondrial carriers. , 2010, Current opinion in structural biology.

[31]  J. Pittman,et al.  Shaping the calcium signature. , 2009, The New phytologist.

[32]  J. Soll,et al.  A High-Conductance Solute Channel in the Chloroplastic Outer Envelope from Pea , 1998, Plant Cell.

[33]  K. Philippar,et al.  Solute channels of the outer membrane: from bacteria to chloroplasts , 2007, Biological chemistry.

[34]  Todd E. Woerner,et al.  A cell surface receptor mediates extracellular Ca2+ sensing in guard cells , 2003, Nature.

[35]  Y. Anraku,et al.  Monitoring of intracellular calcium in Saccharomyces cerevisiae with an apoaequorin cDNA expression system. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[36]  V. Trézéguet,et al.  The Dynamic Dimerization of the Yeast ADP/ATP Carrier in the Inner Mitochondrial Membrane Is Affected by Conserved Cysteine Residues* , 2003, Journal of Biological Chemistry.

[37]  L. Williams,et al.  Sugar transporters in higher plants--a diversity of roles and complex regulation. , 2000, Trends in plant science.

[38]  H. Vogel,et al.  Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. , 2007, The Biochemical journal.

[39]  U. Vothknecht,et al.  Sinefungin inhibits chlorophyll synthesis by blocking the S-adenosyl-methionine : Mg-protoporphyrin IX O-methyltransferase in greening barley leaves , 1995 .

[40]  J. Garin,et al.  Proteomics of the Chloroplast Envelope Membranes from Arabidopsis thaliana*S , 2003, Molecular & Cellular Proteomics.

[41]  J. Chory,et al.  Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Saheki,et al.  Citrin and aralar1 are Ca2+‐stimulated aspartate/glutamate transporters in mitochondria , 2001, The EMBO journal.

[43]  Amos Bairoch,et al.  ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins , 2006, Nucleic Acids Res..

[44]  J. Satrústegui,et al.  Yeast mitochondria import ATP through the calcium‐dependent ATP‐Mg/Pi carrier Sal1p, and are ATP consumers during aerobic growth in glucose , 2008, Molecular microbiology.

[45]  M. Sachs,et al.  Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. , 1994, The Plant cell.

[46]  D. Logan,et al.  Mitochondrial and Cytosolic Calcium Dynamics Are Differentially Regulated in Plants1 , 2003, Plant Physiology.

[47]  J. Satrústegui,et al.  Identification of a Novel Human Subfamily of Mitochondrial Carriers with Calcium-binding Domains* , 2004, Journal of Biological Chemistry.

[48]  H. Ohta,et al.  The bacterial stringent response, conserved in chloroplasts, controls plant fertilization. , 2008, Plant & cell physiology.

[49]  J. Sheen,et al.  Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis , 2007, Nature Protocols.

[50]  D. Slotboom,et al.  The yeast mitochondrial ADP/ATP carrier functions as a monomer in mitochondrial membranes , 2007, Proceedings of the National Academy of Sciences.

[51]  E. Martegani,et al.  Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin. , 2011, Cell calcium.

[52]  F. Santorelli,et al.  BACTERIAL EXPRESSION, RECONSTITUTION, FUNCTIONAL CHARACTERIZATION, AND TISSUE DISTRIBUTION OF TWO HUMAN ISOFORMS* , 2003 .

[53]  Xin Jie Chen Sal1p, a Calcium-Dependent Carrier Protein That Suppresses an Essential Cellular Function Associated With the Aac2 Isoform of ADP/ATP Translocase in Saccharomyces cerevisiae , 2004, Genetics.

[54]  A. Wiederkehr,et al.  Requirement for Aralar and Its Ca2+-binding Sites in Ca2+ Signal Transduction in Mitochondria from INS-1 Clonal β-Cells* , 2009, Journal of Biological Chemistry.

[55]  A. Rasmusson,et al.  Ca2+-binding and Ca2+-independent Respiratory NADH and NADPH Dehydrogenases of Arabidopsis thaliana* , 2007, Journal of Biological Chemistry.

[56]  V. Trézéguet,et al.  Subunits of the yeast mitochondrial ADP/ATP carrier: cooperation within the dimer. , 2005, Biochemistry.

[57]  P. Polčic,et al.  Adenine nucleotide transport via Sal1 carrier compensates for the essential function of the mitochondrial ADP/ATP carrier. , 2010, FEMS yeast research.

[58]  J. Garin,et al.  AT_CHLORO, a Comprehensive Chloroplast Proteome Database with Subplastidial Localization and Curated Information on Envelope Proteins* , 2010, Molecular & Cellular Proteomics.

[59]  A. Dodd,et al.  The language of calcium signaling. , 2010, Annual review of plant biology.

[60]  T. Saheki,et al.  Ca2+ Activation Kinetics of the Two Aspartate-Glutamate Mitochondrial Carriers, Aralar and Citrin , 2007, Journal of Biological Chemistry.

[61]  Thomas A. DeFalco,et al.  Breaking the code: Ca2+ sensors in plant signalling. , 2009, The Biochemical journal.

[62]  M. Saraste,et al.  Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase , 1982, FEBS letters.

[63]  F. Eisenhaber,et al.  Experimental testing of predicted myristoylation targets involved in asymmetric cell division and calcium-dependent signalling , 2008, Cell cycle.

[64]  A. Le Saux,et al.  The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. , 1998, Biochimie.

[65]  Y. Eilam,et al.  Transient increase in Ca2+ influx in Saccharomyces cerevisiae in response to glucose: effects of intracellular acidification and cAMP levels. , 1990, Journal of general microbiology.

[66]  T. Shiina,et al.  Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. , 2007, The Plant journal : for cell and molecular biology.

[67]  Leonie Steinhorst,et al.  A plastid protein crucial for Ca2+-regulated stomatal responses. , 2008, The New phytologist.

[68]  J. Satrústegui,et al.  The calcium-dependent ATP-Mg/Pi mitochondrial carrier is a target of glucose-induced calcium signalling in Saccharomyces cerevisiae. , 2005, The Biochemical journal.

[69]  J. Satrústegui,et al.  Transport of adenine nucleotides in the mitochondria of Saccharomyces cerevisiae: interactions between the ADP/ATP carriers and the ATP-Mg/Pi carrier. , 2009, Mitochondrion.

[70]  F. Palmieri Mitochondrial carrier proteins , 1994, FEBS letters.

[71]  T. Furuichi,et al.  Sugar-induced increase in cytosolic Ca(2+) in Arabidopsis thaliana whole plants. , 2001, Plant & cell physiology.

[72]  Robert H. Khetsinger Carp Muscle Calcium-binding Protein , 2006 .

[73]  R. Kretsinger,et al.  Carp muscle calcium-binding protein. II. Structure determination and general description. , 1973, The Journal of biological chemistry.