Regular Augmentation of Planar Graphs

In this paper, we study the problem of augmenting a planar graph such that it becomes $$k$$k-regular, $$c$$c-connected and remains planar, either in the sense that the augmented graph is planar, or in the sense that the input graph has a fixed (topological) planar embedding that can be extended to a planar embedding of the augmented graph. We fully classify the complexity of this problem for all values of $$k$$k and $$c$$c in both, the variable embedding and the fixed embedding case. For $$k \le 2$$k≤2 all problems are simple and for $$k \ge 4$$k≥4 all problems are NP-complete. Our main results are efficient algorithms (with running time $$O(n^{1.5}))$$O(n1.5)) for deciding the existence of a $$c$$c-connected, 3-regular augmentation of a graph with a fixed planar embedding for $$c=0,1,2$$c=0,1,2 and a corresponding hardness result for $$c=3$$c=3. The algorithms are such that for yes-instances a corresponding augmentation can be constructed in the same running time.

[1]  Donald E. Knuth,et al.  The Problem of Compatible Representatives , 1992, SIAM J. Discret. Math..

[2]  Toshihide Ibaraki,et al.  Graph connectivity and its augmentation: applications of MA orderings , 2002, Discret. Appl. Math..

[3]  Mark de Berg,et al.  Optimal Binary Space Partitions for Segments in the Plane , 2012, Int. J. Comput. Geom. Appl..

[4]  David Lichtenstein,et al.  Planar Formulae and Their Uses , 1982, SIAM J. Comput..

[5]  Joseph JáJá,et al.  Approximation Algorithms for Several Graph Augmentation Problems , 1981, SIAM J. Comput..

[6]  Harold N. Gabow,et al.  An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems , 1983, STOC.

[7]  Alexander Wolff,et al.  Augmenting the Connectivity of Planar and Geometric Graphs , 2012, J. Graph Algorithms Appl..

[8]  Csaba D. Tóth,et al.  Tri-Edge-Connectivity Augmentation for Planar Straight Line Graphs , 2009, ISAAC.

[9]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[10]  Csaba D. Tóth Connectivity augmentation in plane straight line graphs , 2008, Electron. Notes Discret. Math..

[11]  Jorge Urrutia,et al.  Augmenting the connectivity of geometric graphs , 2008, Comput. Geom..

[12]  D. Barnette On Steinitz's theorem concerning convex 3-polytopes and on some properties of planar graphs , 1969 .

[13]  Jan Kratochvíl,et al.  Testing planarity of partially embedded graphs , 2010, SODA '10.

[14]  Csaba D. Tóth,et al.  Plane Geometric Graph Augmentation: A Generic Perspective , 2013 .

[15]  Akira Nakamura,et al.  Edge-Connectivity Augmentation Problems , 1987, J. Comput. Syst. Sci..

[16]  Alexander Pilz Augmentability to Cubic Graphs , 2012 .

[17]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[18]  Goos Kant,et al.  Planar Graph Augmentation Problems (Extended Abstract) , 1991, WADS.

[19]  Robert E. Tarjan,et al.  Augmentation Problems , 1976, SIAM J. Comput..