Verification of Durational Action Timed Automata using UPPAAL

The increasing complexity of software is incessant, this phenomenon is even more accentuated when temporal aspects are introduced, hence the need for rigorous verification methods. The main purpose of this paper is to propose a quantitative verification approach based on model checking. Their properties are expressed in TCTL (Timed Computation Tree Logic) on real-time systems. The system behavior is expressed by temporal labeled systems; namely Durational Action Timed Automata model (DATA* model). This model supports the expression of the parallel behavior, the temporal and structural non-atomicity of actions and urgency.

[1]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[2]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[3]  Nabil Belala,et al.  Actions Duration in Timed Models , 2006 .

[4]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic , 2008, 25 Years of Model Checking.

[5]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[6]  Joseph Sifakis,et al.  The IF Toolset , 2004, SFM.

[7]  Marco Furini,et al.  International Journal of Computer and Applications , 2010 .

[8]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[9]  C. A. R. Hoare,et al.  A Calculus of Durations , 1991, Inf. Process. Lett..

[10]  C. Petri Kommunikation mit Automaten , 1962 .

[11]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[12]  Howard Bowman,et al.  Concurrency Theory: Calculi an Automata for Modelling Untimed and Timed Concurrent Systems , 2005 .

[13]  Wang Yi,et al.  Formal design and analysis of a gear controller , 1998, International Journal on Software Tools for Technology Transfer.

[14]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[15]  Nabil Belala,et al.  Modèles de temps et leur intérêt à la vérification formelle des systèmes temps-réel. (On time models on formal verification of real-time systems) , 2010 .

[16]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[17]  H. Hachichi,et al.  A simple approach for reducing timed automata , 2012, 2012 International Conference on Information Technology and e-Services.

[18]  Joseph Sifakis,et al.  Modeling Urgency in Timed Systems , 1997, COMPOS.

[19]  Roberto Barbuti,et al.  Timed automata with urgent transitions , 2004, Acta Informatica.

[20]  Sergio Yovine,et al.  KRONOS: a verification tool for real-time systems , 1997, International Journal on Software Tools for Technology Transfer.

[21]  Satoshi Yamane,et al.  The symbolic model-checking for real-time systems , 1996, Proceedings of the Eighth Euromicro Workshop on Real-Time Systems.

[22]  Ilham Kitouni,et al.  A Graph Grammar Approach for Calculation of Aggregate Regions Automata , 2011 .

[23]  Nabil Belala,et al.  Aggregation of transitions in marking graph generation based on maximality semantics for petri nets , 2008 .

[24]  Rodolfo Gomez Verification of Timed Automata with Deadlines in Uppaal , 2008 .

[25]  Tommaso Bolognesi,et al.  Tableau methods to describe strong bisimilarity on LOTOS processes involving pure interleaving and enabling , 1994, FORTE.