Microwave Package Design for Superconducting Quantum Processors.

Solid-state qubits with transition frequencies in the microwave regime, such as superconducting qubits, are at the forefront of quantum information processing. However, high-fidelity, simultaneous control of superconducting qubits at even a moderate scale remains a challenge, partly due to the complexities of packaging these devices. Here, we present an approach to microwave package design focusing on material choices, signal line engineering, and spurious mode suppression. We describe design guidelines validated using simulations and measurements used to develop a 24-port microwave package. Analyzing the qubit environment reveals no spurious modes up to 11GHz. The material and geometric design choices enable the package to support qubits with lifetimes exceeding 350 {\mu}s. The microwave package design guidelines presented here address many issues relevant for near-term quantum processors.

[1]  Chansik Park,et al.  Novel approach to optimizing a broadband right‐angle coaxial‐to‐microstrip transition , 2007 .

[2]  H. A. Affel,et al.  Transmission lines , 1934 .

[3]  N. Langford,et al.  Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling , 2016, Nature Communications.

[4]  N. Fredj,et al.  Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films , 2011 .

[5]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[6]  John M. Martinis,et al.  Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits , 2014, 1407.4769.

[7]  W. Marsden I and J , 2012 .

[8]  Damon Russell,et al.  Integrating High-Density Microwave Signalling and Packaging With Superconducting Qubits , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[9]  T. Zwick,et al.  Design and measurement of matched wire bond and flip chip interconnects for D-band system-in-package applications , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[10]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[11]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[12]  W. Oliver,et al.  Study of loss in superconducting coplanar waveguide resonators , 2010, 1010.6063.

[13]  J. Sharma Heat conductivities below 1° K. II , 1967 .

[14]  J. Clarke,et al.  The flux qubit revisited to enhance coherence and reproducibility , 2015, Nature Communications.

[15]  L Frunzio,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2005, Physical review letters.

[16]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[17]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[18]  Jerry C. Whitaker,et al.  The Electronics Handbook , 2005 .

[19]  R.N. Master,et al.  Ceramic mini-ball grid array package for high speed device , 1995, 1995 Proceedings. 45th Electronic Components and Technology Conference.

[20]  D. Rosenberg,et al.  Determining Interface Dielectric Losses in Superconducting Coplanar-Waveguide Resonators , 2018, Physical Review Applied.

[21]  Reydezel Torres-Torres,et al.  Scalable models to represent the via-pad capacitance and via-traces inductance in multilayer PCB high-speed interconnects , 2017, 2017 International Caribbean Conference on Devices, Circuits and Systems (ICCDCS).

[22]  J.-R. Regue,et al.  A multimodal analysis of the effects of guard traces over near wideband signal paths , 2005, 2005 International Symposium on Electromagnetic Compatibility, 2005. EMC 2005..

[23]  R. Abhari,et al.  Using via fences for crosstalk reduction in PCB circuits , 2006, 2006 IEEE International Symposium on Electromagnetic Compatibility, 2006. EMC 2006..

[24]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[25]  Sarah Sheldon,et al.  Characterization of hidden modes in networks of superconducting qubits , 2017, 1703.04501.

[26]  A Reusable, Low-profile, Cryogenic Wire Seal. , 2010, Cryogenics.

[27]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[28]  Jerry M Chow,et al.  High coherence plane breaking packaging for superconducting qubits , 2017, Quantum science and technology.

[29]  Erik Lucero,et al.  Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits , 2010, 1011.4982.

[30]  Yang Yu,et al.  Extensible 3D architecture for superconducting quantum computing , 2017, 1705.02586.

[31]  David Kim,et al.  Solid-State Qubits: 3D Integration and Packaging , 2020, IEEE Microwave Magazine.

[32]  I. Bahl Lumped Elements for RF and Microwave Circuits , 2003 .

[33]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[34]  L. Frunzio,et al.  Hot Nonequilibrium Quasiparticles in Transmon Qubits. , 2018, Physical review letters.

[35]  D. Rosenberg,et al.  Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators , 2017, 1709.10015.

[36]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[37]  Isaac Asimov,et al.  Transmission lines , 2007, Nature.

[38]  T. Gudmundsen,et al.  Thermal and Residual Excited-State Population in a 3D Transmon Qubit. , 2014, Physical review letters.

[39]  L. Michiels,et al.  HEAT CONDUCTIVITY OF COPPER BELOW 1 K , 1964 .

[40]  John M. Martinis,et al.  Quantum theory of a bandpass Purcell filter for qubit readout , 2015, 1504.06030.

[41]  W. Fichtner,et al.  Parasitic modes on printed circuit boards and their effects on EMC and signal integrity , 2001 .

[42]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[43]  Austin G. Fowler,et al.  Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket , 2016 .

[44]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[45]  F. Bloch,et al.  Generalized Theory of Relaxation , 1957 .

[46]  M. A. Rol,et al.  Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor , 2019, Applied Physics Letters.

[47]  Austin G. Fowler,et al.  High speed flux sampling for tunable superconducting qubits with an embedded cryogenic transducer , 2018, Superconductor Science and Technology.

[48]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[49]  G. Ponchak,et al.  Excitation of coupled slotline mode in finite-ground CPW with unequal ground-plane widths , 2005, IEEE Transactions on Microwave Theory and Techniques.

[50]  G.,et al.  On the Theory of Relaxation Processes * , 2022 .

[51]  C. Snow Formulas for computing capacitance and inductance , 1954 .

[52]  Erik Nielsen,et al.  Detecting crosstalk errors in quantum information processors. , 2019 .

[53]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[54]  D. Yost,et al.  3D integrated superconducting qubits , 2017, 1706.04116.

[55]  A. Marx,et al.  Loss mechanisms in superconducting thin film microwave resonators , 2015, 1510.05957.

[57]  Zijun Chen,et al.  A method for building low loss multi-layer wiring for superconducting microwave devices , 2018 .