High-Performance Symbolic Parameter Synthesis of Biological Models: A Case Study

Complex behaviour arising in biological systems is described by highly parameterised dynamical models. Most of the parameters are mutually dependent and therefore it is hard and computationally demanding to find admissible parameter values with respect to hypothesised constraints and wet-lab measurements. Recently, we have developed several high-performance techniques for parameter synthesis that are based on parallel coloured model checking. These methods allow to obtain parameter values that guarantee satisfaction of a given set of dynamical properties and parameter constraints. In this paper, we review the applicability of our techniques in the context of biological systems. In particular, we provide an extended analysis of a genetic switch controlling the regulation in mammalian cell cycle phase transition and a synthetic pathway for biodegradation of a toxic pollutant in E. coli.

[1]  Calin Belta,et al.  Robustness analysis and tuning of synthetic gene networks , 2007, Bioinform..

[2]  Rosita Guido,et al.  Taming the complexity of biological pathways through parallel computing , 2008, Briefings Bioinform..

[3]  Lubos Brim,et al.  Parameter Synthesis by Parallel Coloured CTL Model Checking , 2015, CMSB.

[4]  Jan Brezovsky,et al.  Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant. , 2014, ACS synthetic biology.

[5]  Calin Belta,et al.  Parameter Synthesis for Piecewise Affine Systems from Temporal Logic Specifications , 2008, HSCC.

[6]  Alexander E. Kel,et al.  Bifurcation analysis of the regulatory modules of the mammalian G1/S transition , 2004, Bioinform..

[7]  Clark W. Barrett,et al.  The SMT-LIB Standard Version 2.0 , 2010 .

[8]  Lubos Brim,et al.  On Parameter Synthesis by Parallel Model Checking , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[9]  Paolo Zuliani,et al.  BioPSy: An SMT-based Tool for Guaranteed Parameter Set Synthesis of Biological Models , 2015, CMSB.

[10]  Marsha Chechik,et al.  Symbolic optimization with SMT solvers , 2014, POPL.

[11]  Calin Belta,et al.  Model Checking Genetic Regulatory Networks with Parameter Uncertainty , 2007, HSCC.

[12]  Hui Kong,et al.  Abstraction-Based Parameter Synthesis for Multiaffine Systems , 2015, Haifa Verification Conference.

[13]  Lubos Brim,et al.  Parallel SMT-Based Parameter Synthesis with Application to Piecewise Multi-affine Systems , 2016, ATVA.

[14]  Carla Piazza,et al.  Parameter Synthesis Through Temporal Logic Specifications , 2015, FM.

[15]  François Fages,et al.  A general computational method for robustness analysis with applications to synthetic gene networks , 2009, Bioinform..

[16]  Johan Karlsson,et al.  Comparison of approaches for parameter identifiability analysis of biological systems , 2014, Bioinform..

[17]  Edmund M. Clarke,et al.  dReal: An SMT Solver for Nonlinear Theories over the Reals , 2013, CADE.

[18]  Lucie M. Gattepaille,et al.  Robustness Analysis and Behavior Discrimination in Enzymatic Reaction Networks , 2011, PloS one.

[19]  Pietro Liò,et al.  Computational Modeling, Formal Analysis, and Tools for Systems Biology , 2016, PLoS Comput. Biol..

[20]  François Fages,et al.  BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge , 2006, Bioinform..

[21]  Edoardo Pasolli,et al.  Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights , 2016, PLoS Comput. Biol..

[22]  Ezio Bartocci,et al.  From Cardiac Cells to Genetic Regulatory Networks , 2011, CAV.