Existence and diffusive limit of a two-species kinetic model of chemotaxis

In this paper, we propose a kinetic model describing the collective motion by chemotaxis of two species in interaction emitting the same chemoattractant. Such model can be seen as a generalisation to several species of the Othmer-Dunbar-Alt model which takes into account the run-and-tumble process of bacteria. Existence of weak solutions for this two-species kinetic model is studied and the convergence of its diffusive limit towards a macroscopic model of Keller-Segel type is analysed.

[1]  N. Vauchelet,et al.  Chemotaxis: from kinetic equations to aggregate dynamics , 2011, Nonlinear Differential Equations and Applications NoDEA.

[2]  N. Bellomo,et al.  MULTICELLULAR BIOLOGICAL GROWING SYSTEMS: HYPERBOLIC LIMITS TOWARDS MACROSCOPIC DESCRIPTION , 2007 .

[3]  Hyung Ju Hwang,et al.  Global Solutions of Nonlinear Transport Equations for Chemosensitive Movement , 2005, SIAM J. Math. Anal..

[4]  H. Berg,et al.  Dynamics of formation of symmetrical patterns by chemotactic bacteria , 1995, Nature.

[5]  B. Perthame,et al.  Directional persistence of chemotactic bacteria in a traveling concentration wave , 2011, Proceedings of the National Academy of Sciences.

[6]  Marco Di Francesco,et al.  Measure solutions for non-local interaction PDEs with two species , 2013 .

[7]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[8]  Benoît Perthame,et al.  PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic , 2004 .

[9]  N. Darnton,et al.  Influence of topology on bacterial social interaction , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  C. Schmeiser,et al.  Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms , 2005, Journal of mathematical biology.

[11]  Hyung Ju Hwang,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization , 2022 .

[12]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[13]  Angela Stevens,et al.  Simultaneous finite time blow-up in a two-species model for chemotaxis , 2009 .

[14]  Antonio Fasano,et al.  EQUILIBRIUM OF TWO POPULATIONS SUBJECT TO CHEMOTAXIS , 2004 .

[15]  Howard C. Berg,et al.  E. coli in Motion , 2003 .

[16]  Gershon Wolansky,et al.  Multi-components chemotactic system in the absence of conflicts , 2002, European Journal of Applied Mathematics.

[17]  J A Sherratt,et al.  Dictyostelium discoideum: cellular self-organization in an excitable biological medium , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  Thomas Hillen,et al.  Hyperbolic models for chemotaxis in 1-D , 2000 .

[19]  T. Hillen HYPERBOLIC MODELS FOR CHEMOSENSITIVE MOVEMENT , 2002 .

[20]  Juan Soler,et al.  MULTISCALE BIOLOGICAL TISSUE MODELS AND FLUX-LIMITED CHEMOTAXIS FOR MULTICELLULAR GROWING SYSTEMS , 2010 .

[21]  Dirk Horstmann,et al.  Generalizing the Keller–Segel Model: Lyapunov Functionals, Steady State Analysis, and Blow-Up Results for Multi-species Chemotaxis Models in the Presence of Attraction and Repulsion Between Competitive Interacting Species , 2011, J. Nonlinear Sci..

[22]  Zhian Wang,et al.  Development of traveling waves in an interacting two-species chemotaxis model , 2013 .

[23]  Wolfgang Alt,et al.  Stability results for a diffusion equation with functional drift approximating a chemotaxis model , 1987 .

[24]  R. Natalini,et al.  Global existence of smooth solutions to a two-dimensional hyperbolic model of chemotaxis , 2010 .

[25]  Alexander Kurganov,et al.  Numerical study of two-species chemotaxis models , 2013 .

[26]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[27]  Alexander Kurganov,et al.  ON A CHEMOTAXIS MODEL WITH SATURATED CHEMOTACTIC FLUX , 2012 .

[28]  B. Perthame,et al.  Kinetic Models for Chemotaxis and their Drift-Diffusion Limits , 2004 .

[29]  Carlos Conca,et al.  Sharp condition for blow-up and global existence in a two species chemotactic Keller–Segel system in 2 , 2012, European Journal of Applied Mathematics.

[30]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[31]  Benoit Perthame,et al.  Global Existence for a Kinetic Model of Chemotaxis via Dispersion and Strichartz Estimates , 2007, 0709.4171.

[32]  Carlos Conca,et al.  Remarks on the blowup and global existence for a two species chemotactic Keller–Segel system in 2 , 2011, European Journal of Applied Mathematics.

[33]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[34]  B. Perthame,et al.  Derivation of hyperbolic models for chemosensitive movement , 2005, Journal of mathematical biology.

[35]  N. Vauchelet Numerical simulation of a kinetic model for chemotaxis , 2010 .

[36]  Pascal Silberzan,et al.  Mathematical Description of Bacterial Traveling Pulses , 2009, PLoS Comput. Biol..

[37]  H. Othmer,et al.  Models of dispersal in biological systems , 1988, Journal of mathematical biology.