Case Histories in Soil and Rock Erosion: Woodrow Wilson Bridge, Brazos River Meander, Normandy Cliffs, and New Orleans Levees

This lecture presents four case history examples of erosion processes. Because the topic of soil and rock erosion is relatively underdeveloped in geotechnical engineering, an introduction precedes the case histories to describe some fundamental aspects of erosion. Erosion involves the soil or rock through its erodibility, the water through its velocity, and the geometry of the obstacle through its size and shape. Knowledge of these three components is needed for any erosion problem to be studied and solved. A set of fundamental issues are addressed in the first part including an erodibility classification for soils and rocks, an explanation of the stresses imposed by the water on the soil-water or rock-water interface, and an explanation of how the geometry impacts the problem. The Woodrow Wilson Bridge case history outlines a new and less conservative method to compute the scour depth and gives examples of bridge scour calculations. The Brazos River meander case history outlines a new method to predict m...

[1]  S. Costa,et al.  Le recul des falaises crayeuses du Pays de Caux : détermination des processus d'érosion et quantification des rythmes d'évolution , 2002 .

[2]  Jean-Louis Briaud,et al.  Erosion function apparatus for scour rate predictions , 2001 .

[3]  Kenneth O. Emery,et al.  Sea cliffs: Their processes, profiles, and classification , 1982 .

[4]  Paolo Gardoni,et al.  Probability of Exceedance Estimates for Scour Depth around Bridge Piers , 2008 .

[5]  J. Sterling Jones,et al.  Scour around Exposed Pile Foundations , 1996 .

[6]  James L. Sherard,et al.  Hydraulic Fracturing in Embankment Dams , 1985 .

[7]  Hamn-Ching Chen,et al.  Assessment of a Reynolds Stress Closure Model for Appendage-Hull Junction Flows , 1995 .

[8]  Jean-Louis Briaud,et al.  SRICOS-EFA Method for Contraction Scour in Fine-Grained Soils , 2005 .

[9]  J-L Briaud,et al.  PIER SCOUR AT WOODROW WILSON BRIDGE AND SRICOS METHOD , 2002 .

[10]  Jean-Louis Briaud,et al.  Stochastic Flow Analysis for Predicting River Scour of Cohesive Soils , 2006 .

[11]  V. C. Patel,et al.  Solutions of Reynolds-averaged Navier-stokes equations for three-dimensional incompressible flows , 1990 .

[12]  D. Temple,et al.  HEADCUT ADVANCE PREDICTION FOR EARTH SPILLWAYS , 1997 .

[13]  Jean-Louis Briaud,et al.  MEASURED AND PREDICTED AXIAL RESPONSE OF 98 PILES , 1988 .

[14]  Jurjen A. Battjes,et al.  Measurement of Fluctuating Pressures on Coarse Bed Material , 2005 .

[15]  Gregory J. Hanson,et al.  DEVELOPMENT OF A JET INDEX TO CHARACTERIZE EROSION RESISTANCE OF SOILS IN EARTHEN SPILLWAYS , 1991 .

[16]  H-C Chen NUMERICAL SIMULATION OF SCOUR AROUND COMPLEX PIERS IN COHESIVE SOIL , 2002 .

[17]  Gary W. Brunner,et al.  HEC-RAS River Analysis System. Hydraulic Reference Manual. Version 1.0. , 1995 .

[18]  Wei Wang,et al.  Establish Guidance for Soils Properties―Based Prediction of Meander Migration Rate , 2007 .

[19]  Robin Fell,et al.  Investigation of Rate of Erosion of Soils in Embankment Dams , 2004 .

[20]  Wei Wang A hydrograph-based prediction of meander migration , 2006 .

[21]  A. J. Raudkivi,et al.  Loose Boundary Hydraulics , 2020 .

[22]  N. Park A prediction of meander migration based on large-scale flume tests in clay , 2009 .

[23]  J. Brice,et al.  Evolution of Meander Loops , 1974 .

[24]  R. Chapuis,et al.  An improved rotating cylinder technique for quantitative measurements of the scour resistance of clays , 1986 .

[25]  V. C. Patel,et al.  Near-wall turbulence models for complex flows including separation , 1988 .

[26]  Kandiah Arulanandan,et al.  APPLICATION OF CHEMICAL AND ELECTRICAL PARAMETERS TO PREDICTION OF ERODIBILITY , 1973 .

[27]  A. Genter,et al.  Coastal chalk cliff instability in NW France: role of lithology, fracture pattern and rainfall , 2004, Geological Society, London, Engineering Geology Special Publications.

[28]  C. Kasse,et al.  Simulating meander evolution of the Geul River (the Netherlands) using a topographic steering model , 2007 .

[29]  G. Annandale Prediction of Scour at Bridge Pier Foundations Founded on Rock and Other Earth Materials , 2000 .

[30]  E. J. Hickin,et al.  Lateral Migration Rates of River Bends , 1984 .

[31]  Erik Bollaert,et al.  Transient water pressures in joints and formation of rock scour due to high-velocity jet impact , 2002 .

[32]  Jean-Louis Briaud,et al.  Probability of scour depth exceedance owing to hydrologic uncertainty , 2007 .

[33]  Almeida Manso,et al.  The influence of pool geometry and induced flow patterns in rock scour by high-velocity plunging jets , 2006 .

[34]  J. Hooke Changes in river meanders , 1984 .

[35]  A. Shields,et al.  Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung , 1936 .

[36]  Jean-Louis Briaud,et al.  Multiflood and Multilayer Method for Scour Rate Prediction at Bridge Piers , 2001 .

[37]  Ya Li,et al.  SRICOS-EFA method for complex piers in fine-grained soils , 2004 .

[38]  Hamn-Ching Chen,et al.  Chimera RANS Simulation of a Berthing DDG-51 Ship In Translational And Rotational Motions , 1998 .

[39]  Jean-Louis Briaud,et al.  SRICOS: Prediction of Scour Rate in Cohesive Soils at Bridge Piers , 1999 .