Intrinsic efficiency and multiple robustness in longitudinal studies with drop-out

Intrinsic efficiency and multiple robustness are desirable properties in missing data analysis. We establish both for estimating the mean of a response at the end of a longitudinal study with drop-out. The idea is to calibrate the estimated missingness probability at each visit using data from past visits. We consider one working model for the missingness probability and multiple working models for the data distribution. Intrinsic efficiency guarantees that, when the missingness probability is correctly modelled, the multiple data distribution models, combined with data prior to the end of the study, are optimally accommodated to maximize efficiency. The efficiency generally increases with the number of data distribution models, except where one such model is correctly specified as well, in which case all the proposed estimators attain the semiparametric efficiency bound. Multiple robustness ensures estimation consistency if the missingness probability model is misspecified but one data distribution model is correct. Our proposed estimators are all convex combinations of the observed responses, and thus always fall within the parameter space.

[1]  Jae Kwang Kim,et al.  An efficient method of estimation for longitudinal surveys with monotone missing data , 2012 .

[2]  Zhiqiang Tan,et al.  Comment: Understanding OR, PS and DR , 2007, 0804.2969.

[3]  Zhiqiang Tan,et al.  A Distributional Approach for Causal Inference Using Propensity Scores , 2006 .

[4]  Lu Wang,et al.  Estimation with missing data: beyond double robustness , 2013 .

[5]  J. Robins,et al.  Doubly Robust Estimation in Missing Data and Causal Inference Models , 2005, Biometrics.

[6]  Zhiqiang Tan Comment: Improved Local Efficiency and Double Robustness , 2008, The international journal of biostatistics.

[7]  Biao Zhang,et al.  Empirical‐likelihood‐based inference in missing response problems and its application in observational studies , 2007 .

[8]  J. Robins,et al.  Semiparametric regression estimation in the presence of dependent censoring , 1995 .

[9]  J. Robins,et al.  Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models , 1999 .

[10]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[11]  Jae Kwang Kim Calibration estimation using exponential tilting in sample surveys , 2010 .

[12]  Jing Qin,et al.  Improving semiparametric estimation by using surrogate data , 2008 .

[13]  J. Robins,et al.  Semiparametric Efficiency in Multivariate Regression Models with Missing Data , 1995 .

[14]  A. Tsiatis Semiparametric Theory and Missing Data , 2006 .

[15]  Peisong Han,et al.  A further study of the multiply robust estimator in missing data analysis , 2014 .

[16]  C. Särndal,et al.  Calibration Estimators in Survey Sampling , 1992 .

[17]  J. Robins,et al.  Improved double-robust estimation in missing data and causal inference models. , 2012, Biometrika.

[18]  M. Davidian,et al.  Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data , 2009, Biometrika.

[19]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[20]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[21]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[22]  J. Robins,et al.  Comment: Performance of Double-Robust Estimators When “Inverse Probability” Weights Are Highly Variable , 2007, 0804.2965.

[23]  Mark J van der Laan,et al.  Empirical Efficiency Maximization: Improved Locally Efficient Covariate Adjustment in Randomized Experiments and Survival Analysis , 2008, The international journal of biostatistics.

[24]  A note on improving the efficiency of inverse probability weighted estimator using the augmentation term , 2012 .

[25]  Zhiqiang Tan,et al.  Bounded, efficient and doubly robust estimation with inverse weighting , 2010 .

[26]  Kwun Chuen Gary Chan,et al.  Oracle, Multiple Robust and Multipurpose Calibration in a Missing Response Problem , 2014, 1410.3958.

[27]  D. Horvitz,et al.  A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .

[28]  J. Robins,et al.  Estimation of Regression Coefficients When Some Regressors are not Always Observed , 1994 .

[29]  J. Robins,et al.  Analysis of semiparametric regression models for repeated outcomes in the presence of missing data , 1995 .

[30]  Peisong Han,et al.  Multiply Robust Estimation in Regression Analysis With Missing Data , 2014 .

[31]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data , 1988 .

[32]  Marie Davidian,et al.  Improved Doubly Robust Estimation When Data Are Monotonely Coarsened, with Application to Longitudinal Studies with Dropout , 2011, Biometrics.