Semiparametric Approach to a Random Effects Quantile Regression Model

We consider a random effects quantile regression analysis of clustered data and propose a semiparametric approach using empirical likelihood. The random regression coefficients are assumed independent with a common mean, following parametrically specified distributions. The common mean corresponds to the population-average effects of explanatory variables on the conditional quantile of interest, whereas the random coefficients represent cluster-specific deviations in the covariate effects. We formulate the estimation of the random coefficients as an estimating equations problem and use empirical likelihood to incorporate the parametric likelihood of the random coefficients. A likelihood-like statistical criterion function is proposed that, which we show is asymptotically concave in a neighborhood of the true parameter value and motivates its maximizer as a natural estimator. We use Markov chain Monte Carlo samplers in the Bayesian framework, and propose the resulting quasi-posterior mean as an estimator. We show that the proposed estimator of the population-level parameter is asymptotically normal, and that the estimators of the random coefficients are shrunk toward the population-level parameter in the first-order asymptotic sense. These asymptotic results do not require Gaussian random effects, and the empirical likelihood-based likelihood-like criterion function is free of parameters related to the error densities. This makes the proposed approach both flexible and computationally simple. We illustrate the methodology with two real data examples.

[1]  Xuming He,et al.  Bayesian empirical likelihood for quantile regression , 2012, 1207.5378.

[2]  A. Kottas,et al.  Bayesian Semiparametric Modelling in Quantile Regression , 2009 .

[3]  Jun S. Liu,et al.  Implementation of Estimating Function-Based Inference Procedures With Markov Chain Monte Carlo Samplers , 2007 .

[4]  D. Gustafson,et al.  The Network for the Improvement of Addiction Treatment (NIATx): enhancing access and retention. , 2007, Drug and alcohol dependence.

[5]  Jack A. Taylor,et al.  Bayesian Latent Variable Models for Median Regression on Multiple Outcomes , 2003, Biometrics.

[6]  Guosheng Yin,et al.  Bayesian generalized method of moments , 2009 .

[7]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[8]  Art B. Owen,et al.  Empirical Likelihood for Linear Models , 1991 .

[9]  Sin-Ho Jung Quasi-Likelihood for Median Regression Models , 1996 .

[10]  M. Lavine On an approximate likelihood for quantiles , 1995 .

[11]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[12]  S. R. Searle,et al.  Vec and vech operators for matrices, with some uses in jacobians and multivariate statistics , 1979 .

[13]  Charles E. McCulloch,et al.  Symmetric Matrix Derivatives with Applications , 1982 .

[14]  Susanne M. Schennach,et al.  Bayesian exponentially tilted empirical likelihood , 2005 .

[15]  N. Lazar Bayesian empirical likelihood , 2003 .

[16]  T. Lancaster,et al.  Bayesian quantile regression methods , 2010 .

[17]  James H. Ford,et al.  Replication and sustainability of improved access and retention within the Network for the Improvement of Addiction Treatment. , 2008, Drug and alcohol dependence.

[18]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[19]  A. Gelfand,et al.  Bayesian Semiparametric Median Regression Modeling , 2001 .

[20]  D. Ruppert,et al.  Trimmed Least Squares Estimation in the Linear Model , 1980 .

[21]  H. Bondell,et al.  Flexible Bayesian quantile regression for independent and clustered data. , 2010, Biostatistics.

[22]  Jack A. Taylor,et al.  Approximate Bayesian inference for quantiles , 2005 .

[23]  M. Krnjajic,et al.  Bayesian Nonparametric Modeling in Quantile Regression , 2007 .

[24]  W. Johnson,et al.  Modeling Regression Error With a Mixture of Polya Trees , 2002 .

[25]  James H. Ford,et al.  Making "stone soup": improvements in clinic access and retention in addiction treatment. , 2007, Joint Commission journal on quality and patient safety.

[26]  R. Koenker Quantile regression for longitudinal data , 2004 .

[27]  T. Lancaster,et al.  Bayesian Quantile Regression , 2005 .

[28]  V. Chernozhukov,et al.  An MCMC Approach to Classical Estimation , 2002, 2301.07782.