A directional entropic force approach to assemble anisotropic nanoparticles into superlattices.

Abstract : Not touching but sticking: By using cationic surfactant micelles as depletants, a directional entropic force approach (DEFA) assembles anisotropic nanoparticles into superlattices in solution. The micelles induce the face-to-face stacking of the nanoparticles to maximize the system's entropy. The shape of the nanoparticles determines the symmetry of the superlattice, the interparticle spacing is determined by the charged surfactant.

[1]  Moniraj Ghosh,et al.  Oriented Assembly of Metamaterials , 2009, Science.

[2]  Fumio Oosawa,et al.  On Interaction between Two Bodies Immersed in a Solution of Macromolecules , 1954 .

[3]  E. Kumacheva,et al.  Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. , 2010, Nature nanotechnology.

[4]  M. Engel,et al.  Competition of shape and interaction patchiness for self-assembling nanoplates. , 2013, Nature chemistry.

[5]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[6]  S. Wereley,et al.  soft matter , 2019, Science.

[7]  T. Mason Osmotically driven shape-dependent colloidal separations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  C. Mirkin,et al.  Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra. , 2011, Journal of the American Chemical Society.

[9]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[10]  Younan Xia,et al.  Formkontrolle bei der Synthese von Metallnanokristallen: einfache Chemie, komplexe Physik? , 2009 .

[11]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[12]  F. C. Schryver,et al.  Parameters affecting aqueous micelles of CTAC, TTAC, and DTAC probed by fluorescence quenching , 1987 .

[13]  L. Manna,et al.  Assembly of shape-controlled nanocrystals by depletion attraction. , 2011, Chemical communications.

[14]  Jianfang Wang,et al.  Ordered gold nanostructure assemblies formed by droplet evaporation. , 2008, Angewandte Chemie.

[15]  Bartosz A. Grzybowski,et al.  Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice , 2006, Science.

[16]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[17]  R. Roe,et al.  Methods of X-ray and Neutron Scattering in Polymer Science , 2000 .

[18]  Christopher E. Wilmer,et al.  Nanoscale forces and their uses in self-assembly. , 2009, Small.

[19]  Hilmar Koerner,et al.  Depletion-induced shape and size selection of gold nanoparticles. , 2010, Nano letters.

[20]  Kaylie L. Young,et al.  Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces , 2012, Proceedings of the National Academy of Sciences.

[21]  P. Damasceno,et al.  Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. , 2011, ACS nano.

[22]  Jiye Fang,et al.  Superlattices with non-spherical building blocks , 2010 .

[23]  S. Sacanna,et al.  Shape-anisotropic colloids: Building blocks for complex assemblies , 2011 .

[24]  David J. Pine,et al.  Cubic crystals from cubic colloids , 2011 .

[25]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[26]  Jian Zhang,et al.  DNA-nanoparticle superlattices formed from anisotropic building blocks. , 2010, Nature materials.

[27]  Michael J. Solomon,et al.  Directions for targeted self-assembly of anisotropic colloids from statistical thermodynamics , 2011 .

[28]  P. Geissler,et al.  Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. , 2012, Nature materials.

[29]  Tian Ming,et al.  Growth of tetrahexahedral gold nanocrystals with high-index facets. , 2009, Journal of the American Chemical Society.

[30]  B. Ninham,et al.  Forces between bilayers of cetyltrimethylammonium bromide in micellar solutions , 1988 .

[31]  Chad A. Mirkin,et al.  Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry. , 2001, Angewandte Chemie.

[32]  S. Sacanna,et al.  Lock and key colloids , 2009, Nature.

[33]  Chad A. Mirkin,et al.  Koordinationschemische Synthesemethoden zum Aufbau supramolekularer Verbindungen , 2001 .

[34]  Peidong Yang,et al.  Tunable plasmonic lattices of silver nanocrystals. , 2007, Nature nanotechnology.

[35]  J. Walz,et al.  Effect of Long Range Interactions on the Depletion Force between Colloidal Particles , 1994 .

[36]  T. Mason,et al.  Directing colloidal self-assembly through roughness-controlled depletion attractions. , 2007, Physical review letters.

[37]  E. Kumacheva,et al.  Evolution of Self‐Assembled Structures of Polymer‐Terminated Gold Nanorods in Selective Solvents , 2008 .

[38]  Byeongdu Lee,et al.  Biomolecular assembly of thermoresponsive superlattices of the tobacco mosaic virus with large tunable interparticle distances. , 2013, Angewandte Chemie.

[39]  L. Manna,et al.  Assembly of colloidal semiconductor nanorods in solution by depletion attraction. , 2010, Nano letters.

[40]  Daniele Fava,et al.  Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. , 2007, Nature materials.

[41]  L. Qi,et al.  Controllable self-assembly of PbS nanostars into ordered structures: close-packed arrays and patterned arrays. , 2010, ACS nano.

[42]  P. Damasceno,et al.  Predictive Self-Assembly of Polyhedra into Complex Structures , 2012, Science.

[43]  C. Glinka Methods of X-Ray and Neutron Scattering in Polymer Science, by Ryong-Joon Roe , 2001 .

[44]  C. Mirkin,et al.  Defining rules for the shape evolution of gold nanoparticles. , 2012, Journal of the American Chemical Society.

[45]  Z. Dogic,et al.  Entropy driven self-assembly of nonamphiphilic colloidal membranes , 2010, Proceedings of the National Academy of Sciences.

[46]  G. Ertl,et al.  Nonequilibrium Structures in Condensed Systems , 1996, Science.

[47]  Byeongdu Lee,et al.  Superlattice of rodlike virus particles formed in aqueous solution through like-charge attraction. , 2011, Langmuir : the ACS journal of surfaces and colloids.