Nature of interfacial Dzyaloshinskii-Moriya interactions in graphene/Co/Pt(111) multilayer heterostructures

DFT calculations within the generalized Bloch theorem approach show that interfacial Dzyaloshinskii-Moriya interactions (DMI) at both interfaces of Graphene/Co$_n$/Pt(111) multilayer heterostructures are decoupled for $n \geq 3$. Unlike the property of magnetocrystalline anisotropy for this system, DMI is not affected by stacking defects in the Co layer. The effect of Graphene (Gr) is to invert the chirality of the vaccum/Co interfacial DMI, overall reducing the DMI of the heterostructure, which is nevertheless dominated by the strong spin-orbit coupling (SOC) of Pt. A spectral analysis in the reciprocal space shows that DMI at both the Gr/Co and Co/Pt interfaces have the same nature, namely SOC-split hybrid bands of $d$-orbital character. This proves that a DMI model based on a single band, such the Rashba DMI model, is insuficient to describe the behaviour of this family of Gr-capped $3d/5d$ metal heterostructures.

[1]  A. Fert,et al.  Rashba-Type Dzyaloshinskii-Moriya Interaction, Perpendicular Magnetic Anisotropy, and Skyrmion States at 2D Materials/Co Interfaces. , 2021, Nano letters.

[2]  A. Arnau,et al.  Large Perpendicular Magnetic Anisotropy in Nanometer-Thick Epitaxial Graphene/Co/Heavy Metal Heterostructures for Spin–Orbitronics Devices , 2021, ACS Applied Nano Materials.

[3]  L. Heyderman,et al.  Synthetic chiral magnets promoted by the Dzyaloshinskii–Moriya interaction , 2020, Applied Physics Letters.

[4]  Andrei Kirilyuk,et al.  The 2020 magnetism roadmap , 2020, Journal of Physics D: Applied Physics.

[5]  S. Blügel,et al.  Large Dzyaloshinskii-Moriya interaction induced by chemisorbed oxygen on a ferromagnet surface , 2020, Science Advances.

[6]  C. Panagopoulos,et al.  Physical foundations and basic properties of magnetic skyrmions , 2020, Nature Reviews Physics.

[7]  R. Guerrero,et al.  Intrinsic mixed Bloch-Néel character and chirality of skyrmions in asymmetric epitaxial trilayer. , 2019, ACS applied materials & interfaces.

[8]  A. L. Vázquez de Parga,et al.  Thermally Activated Processes for Ferromagnet Intercalation in Graphene-Heavy Metal Interfaces. , 2019, ACS applied materials & interfaces.

[9]  A. Arnau,et al.  Validity of perturbative methods to treat the spin–orbit interaction: application to magnetocrystalline anisotropy , 2019, New Journal of Physics.

[10]  G. Bihlmayer,et al.  Indirect chiral magnetic exchange through Dzyaloshinskii–Moriya-enhanced RKKY interactions in manganese oxide chains on Ir(100) , 2019, Nature Communications.

[11]  J. Vijayakumar,et al.  Chirally coupled nanomagnets , 2019, Science.

[12]  S. Heinze,et al.  Isolated zero field sub-10 nm skyrmions in ultrathin Co films , 2019, Nature Communications.

[13]  F. Guinea,et al.  Evidence of large spin-orbit coupling effects in quasi-free-standing graphene on Pb/Ir(1 1 1) , 2018, 2D Materials.

[14]  Tetsuya Nakamura,et al.  Correlation of the Dzyaloshinskii–Moriya interaction with Heisenberg exchange and orbital asphericity , 2018, Nature Communications.

[15]  R. Miranda,et al.  Unraveling Dzyaloshinskii-Moriya Interaction and Chiral Nature of Graphene/Cobalt Interface. , 2018, Nano letters.

[16]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017, 1712.07236.

[17]  A. Fert,et al.  Significant Dzyaloshinskii–Moriya interaction at graphene–ferromagnet interfaces due to the Rashba effect , 2017, Nature Materials.

[18]  R. Wiesendanger Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics , 2016 .

[19]  A. Fert,et al.  Controlling Dzyaloshinskii-Moriya Interaction via Chirality Dependent Atomic-Layer Stacking, Insulator Capping and Electric Field , 2016, Scientific Reports.

[20]  R. Wiesendanger,et al.  Electric-field-driven switching of individual magnetic skyrmions. , 2016, Nature nanotechnology.

[21]  G. Bihlmayer,et al.  Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films , 2015, Scientific Reports.

[22]  A. Grüneis,et al.  Observation of single-spin Dirac fermions at the graphene/ferromagnet interface. , 2015, Nano letters.

[23]  A. Fert,et al.  Skyrmions at room temperature : From magnetic thin films to magnetic multilayers , 2015, 1502.07853.

[24]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[25]  G. Bihlmayer,et al.  Describing Dzyaloshinskii–Moriya spirals from first principles , 2009 .

[26]  S. Heinze,et al.  Chiral magnetic order at surfaces driven by inversion asymmetry , 2007, Nature.

[27]  L. Sandratskii,et al.  Symmetry analysis of electronic states for crystals with spiral magnetic order. I. General properties , 1991 .

[28]  M. Farle,et al.  Journal of Magnetism and Magnetic Materials , 2022 .