Degeneracy engineering for classical and quantum annealing: A case study of sparse linear regression in collider physics

Classical and quantum annealing are computing paradigms that have been proposed to solve a wide range of optimization problems. In this paper, we aim to enhance the performance of annealing algorithms by introducing the technique of degeneracy engineering, through which the relative degeneracy of the ground state is increased by modifying a subset of terms in the objective Hamiltonian. We illustrate this novel approach by applying it to the example of (cid:96) 0 -norm regularization for sparse linear regression, which is, in general, an NP -hard optimization problem. Specifically, we show how to cast (cid:96) 0 -norm regularization as a quadratic unconstrained binary optimization (QUBO) problem, suitable for implementation on annealing platforms. As a case study, we apply this QUBO formulation to energy flow polynomials in high-energy collider physics, finding that degeneracy engineering substantially improves the annealing performance. Our results motivate the application of degeneracy engineering to a variety of regularized optimization problems.

[1]  Eric R. Anschuetz,et al.  Quantum variational algorithms are swamped with traps , 2022, Nature communications.

[2]  Sebastian Feld,et al.  How to Approximate any Objective Function via Quadratic Unconstrained Binary Optimization , 2022, 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER).

[3]  H. Gray Quantum pattern recognition algorithms for charged particle tracking , 2021, Philosophical Transactions of the Royal Society A.

[4]  Eric R. Anschuetz Critical Points in Quantum Generative Models , 2021, ICLR.

[5]  P. K. Srijith,et al.  Adiabatic Quantum Feature Selection for Sparse Linear Regression , 2021, ICCS.

[6]  Daniel A. Lidar,et al.  Quantum adiabatic machine learning by zooming into a region of the energy surface , 2020, Physical Review A.

[7]  Ross Duncan,et al.  Evaluating the noise resilience of variational quantum algorithms , 2020, Physical Review A.

[8]  Joonho Kim,et al.  Universal Effectiveness of High-Depth Circuits in Variational Eigenproblems , 2020, ArXiv.

[9]  M. Hastings The Power of Adiabatic Quantum Computation with No Sign Problem , 2020, Quantum.

[10]  Patrick T. Komiske,et al.  Cutting multiparticle correlators down to size , 2019, Physical Review D.

[11]  Helmut G. Katzgraber,et al.  Perspectives of quantum annealing: methods and implementations , 2019, Reports on progress in physics. Physical Society.

[12]  L. Gouskos,et al.  The Machine Learning landscape of top taggers , 2019, SciPost Physics.

[13]  Nikesh S. Dattani,et al.  Quadratization in discrete optimization and quantum mechanics , 2019, ArXiv.

[14]  Román Orús,et al.  Tensor networks for complex quantum systems , 2018, Nature Reviews Physics.

[15]  P. Komiske,et al.  An operational definition of quark and gluon jets , 2018, Journal of High Energy Physics.

[16]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[17]  Patrick T. Komiske,et al.  Energy flow polynomials: a complete linear basis for jet substructure , 2017, 1712.07124.

[18]  Daniel A. Lidar,et al.  Solving a Higgs optimization problem with quantum annealing for machine learning , 2017, Nature.

[19]  Daniel A. Lidar,et al.  Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing , 2017, Physical Review X.

[20]  H. Neven,et al.  Understanding Quantum Tunneling through Quantum Monte Carlo Simulations. , 2015, Physical review letters.

[21]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[22]  Firas Hamze,et al.  Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly , 2015, 1505.01545.

[23]  Daniel A. Lidar,et al.  Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.

[24]  W. Waalewijn,et al.  Gaining (mutual) information about quark/gluon discrimination , 2014, Journal of High Energy Physics.

[25]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[26]  Alán Aspuru-Guzik,et al.  Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.

[27]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[28]  G. Salam,et al.  Energy correlation functions for jet substructure , 2013, 1305.0007.

[29]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[30]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[31]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[32]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[33]  Guy Gur-Ari,et al.  Classification of Energy Flow Observables in Narrow Jets , 2011, 1101.2905.

[34]  S. D. Ellis,et al.  Jet shapes and jet algorithms in SCET , 2010, 1001.0014.

[35]  Koji Hukushima,et al.  Population Annealing and Its Application to a Spin Glass , 2003 .

[36]  R. Moessner,et al.  Interplay of quantum and thermal fluctuations in a frustrated magnet , 2003, cond-mat/0302105.

[37]  Erio Tosatti,et al.  Quantum annealing by the path-integral Monte Carlo method: The two-dimensional random Ising model , 2002 .

[38]  T. Kadowaki Study of Optimization Problems by Quantum Annealing , 2002, quant-ph/0205020.

[39]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[40]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .

[41]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[42]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[43]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[44]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[45]  Dhananjay S. Phatak,et al.  Hybrid Signed-Digit Number Systems: A Unified Framework for Redundant Number Representations With Bounded Carry Propagation Chains , 1994, IEEE Trans. Computers.

[46]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[47]  M. Mézard,et al.  Spin Glass Theory And Beyond: An Introduction To The Replica Method And Its Applications , 1986 .

[48]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[49]  J. A. Barker A quantum‐statistical Monte Carlo method; path integrals with boundary conditions , 1979 .

[50]  M. Suzuki,et al.  Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations , 1976 .

[51]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[52]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[53]  W. Marsden I and J , 2012 .

[54]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[55]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .