Preludes to the Eilenberg-Moore and the Leray-Serre spectral sequences

The Leray–Serre and the Eilenberg–Moore spectral sequence are fundamental tools for computing the cohomology of a group or, more generally, of a space. We describe the relationship between these two spectral sequences when both of them share the same abutment. There exists a joint tri-graded refinement of the Leray–Serre and the Eilenberg–Moore spectral sequence. This refinement involves two more spectral sequences, the preludes from the title, which abut to the initial terms of the Leray–Serre and the Eilenberg–Moore spectral sequence, respectively. We show that one of these always degenerates from its second page on and that the other one satisfies a local-to-global property: It degenerates for all possible base spaces if and only if it does so when the base space is contractible. When the preludes degenerate early enough, they appear to echo Deligne’s décalage, but in general, this is an illusion. We discuss several principal fibrations to illustrate the possible cases and give applications, in particular, to Lie groups, torus bundles, and generalizations.

[1]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[2]  W. Dwyer Strong convergence of the Eilenberg-Moore spectral sequence , 1974 .

[3]  Birgit Richter,et al.  Galois theory and Lubin-Tate cochains on classifying spaces , 2011 .

[4]  Larry Smith Lectures on the Eilenberg-Moore spectral sequence , 1970 .

[5]  T. Höfer Remarks on torus principal bundles , 1993 .

[6]  D. J. Benson,et al.  The Cohomology of Extraspecial Groups , 1992 .

[7]  Claude L. Schochet,et al.  A TWO-STAGE POSTNIKOV SYSTEM WHERE E2 # Ex IN THE EILENBERG-MOORE SPECTRAL SEQUENCE , 2010 .

[8]  D. Rusin The mod-2 cohomology of metacyclic 2-groups , 1987 .

[9]  Jean-Pierre Serre,et al.  Homologie Singuliere Des Espaces Fibres , 1951 .

[10]  M. Mōri The Steenrod operations in the Eilenberg-Moore spectral sequence , 1979 .

[11]  D. Quillen The mod 2 cohomology rings of extra-special 2-groups and the spinor groups , 1971 .

[12]  P. Deligne Theorie de Hodge I , 1970 .

[13]  Claude L. Schochet,et al.  Differentials in the Eilenberg-Moore spectral sequence , 1972 .

[14]  David J. Rusin,et al.  The cohomology of the groups of order 32 , 1989 .

[15]  Shrawan Kumar Rational Homotopy Theory of Flag Varieties Associated to Kac-Moody Groups , 1985 .

[16]  James M. Turner Operations and Spectral Sequences. I , 1998 .

[17]  Mara D. Neusel,et al.  Rings of Generalized and Stable Invariants and Classifying Spaces of Compact Lie Groups , 1997 .

[18]  John McCleary,et al.  User's Guide to Spectral Sequences , 1985 .

[19]  Shrawan Kumar,et al.  Kac-Moody Groups, their Flag Varieties and Representation Theory , 2002 .

[20]  I. Moerdijk,et al.  The equivariant Serre spectral sequence , 1993 .

[21]  Samuel Eilenberg,et al.  On the Groups H(Π, n), I , 1953 .

[22]  Francis Sergeraert,et al.  A new Kenzo module for computing the Eilenberg-Moore spectral sequence , 2020, ACM Commun. Comput. Algebra.

[23]  Larry Smith,et al.  Polynomial Invariants of Finite Groups , 1995 .

[24]  J. Harper On the cohomology of stable two stage Postnikov systems , 1970 .

[25]  Larry Smith HOMOLOGICAL ALGEBRA AND THE EILENBERG-MOORE SPECTRAL SEQUENCE , 1967 .

[26]  John C. Moore Algèbre homologique et homologie des espaces classifiants , 1960 .

[27]  E. Brown The Serre spectral sequence theorem for continuous and ordinary cohomology , 1994 .

[28]  H. Duan On the Borel transgression in the fibration $G \to G/T$ , 2017, 1710.03014.

[29]  Ian J Leary The integral cohomology rings of some p-groups , 1991 .

[30]  R. Godement,et al.  Topologie algébrique et théorie des faisceaux , 1960 .

[31]  Alexander Grothendieck,et al.  Elements de geometrie algebrique III: Etude cohomologique des faisceaux coherents , 1961 .

[32]  Weishu Shih,et al.  Homologie des espaces fibrés , 1962 .

[33]  Victor G. Kac,et al.  Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups , 1985 .

[34]  Jean-Pierre Serre,et al.  Algèbre locale : multiplicités , 1957 .

[35]  Edgar H. Brown,et al.  Twisted Tensor Products, I , 1959 .

[36]  A. Dress Zur Spectralsequenz von Faserungen , 1967 .

[37]  S. Halperin,et al.  Obstructions to homotopy equivalences , 1979 .

[38]  N. Kitchloo On the Topology of Kac–Moody groups , 2008, 0810.0851.

[39]  Allan Clark Homotopy commutativity and the Moore spectral sequence , 1965 .

[40]  Yu. M. Ustinovskii On models of cohomology rings of spaces with a torus action , 2014 .

[41]  A. Adem,et al.  Bundles, cohomology and truncated symmetric polynomials , 2009, Documenta Mathematica.

[42]  Toshiyuki Yagi The Eilenberg-Moore spectral sequence , 1973 .

[43]  Jon P. May,et al.  On the theory and applications of differential torsion products , 1974 .

[44]  H. Miller On relations between Adams spectral sequences, with an application to the stable homotopy of a moore space , 1981 .

[45]  W. Dwyer Exotic convergence of the Eilenberg-Moore spectral sequence , 1975 .

[46]  B. Shipley Convergence of the homology spectral sequence of a cosimplicial space , 1996 .

[47]  William M. Singer Steenrod Squares in Spectral Sequences , 2006 .

[48]  Y. Félix Algebraic models in geometry , 2008 .

[49]  A. Baker On the cohomology of loop spaces for some Thom spaces , 2011, 1105.0692.

[50]  W. Dwyer,et al.  Homotopy fixed-point methods for Lie groups and finite loop spaces , 1994 .

[51]  Basic Theory,et al.  Kac-Moody Groups , 2002 .