Optimal 2-D interleaving with latin rectangles

One of the key problems in the study of optimal interleaving schemes for correcting two-dimensional (2-D) cluster errors is how to place, say, n distinct symbols, each appearing m times, in an m/spl times/n array such that the resulting array has the maximum possible burst error-correcting power. In a previous paper, the authors have proved that for any given m, n, the maximum possible interleaving distance, and hence, the largest possible value t such that an arbitrary error burst of size t can be corrected in an m/spl times/n interleaved array, is given by t=/spl lfloor//spl radic/2n/spl rfloor/ for n = /spl les/ /spl lceil/m/sup 2//2/spl rceil/, and t=m+/spl lfloor/(n-/spl lceil/m/sup 2//2/spl rceil/)/m/spl rfloor/ for n /spl ges/ /spl lceil/m/sup 2//2/spl rceil/. In this work, we extend these results and show that for all m, n with n /spl ges/ m, an optimal m/spl times/n interleaving array can always be obtained by a Latin rectangle in which each row and each column contains each symbol at most once. This provides additional error-correcting power to the array in that all linear error bursts occupying a whole row or column can also be corrected.

[1]  Moshe Schwartz,et al.  Optimal 2-Dimensional 3-Dispersion Lattices , 2003, AAECC.

[2]  J. Dénes,et al.  Latin squares and their applications , 1974 .

[3]  Ronald L. Rivest,et al.  An application of number theory to the organization of raster-graphics memory , 1982, FOCS 1982.

[4]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[5]  Hideki Imai,et al.  A Theory of Two-Dimensional Cyclic Codes , 1977, Inf. Control..

[6]  Anxiao Jiang,et al.  Optimal t-interleaving on tori , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[7]  Anxiao Jiang,et al.  Optimal Interleaving on Tori , 2006, SIAM J. Discret. Math..

[8]  M. Blaum,et al.  Array codes for cluster-error correction , 1994 .

[9]  Anxiao Jiang,et al.  Multicluster interleaving on paths and cycles , 2005, IEEE Transactions on Information Theory.

[10]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[11]  HIDEKI IMAI,et al.  Two-dimensional Fire codes , 1973, IEEE Trans. Inf. Theory.

[12]  T. Etzion,et al.  Two-dimensional interleaving schemes with repetitions: constructions and bounds , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[13]  C. de Almeida,et al.  Two-dimensional interleaving using the set partitioning technique , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[14]  Solomon W. Golomb,et al.  Optimal interleaving schemes for correcting 2-D cluster errors , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[15]  Khaled A. S. Abdel-Ghaffar,et al.  Two-dimensional burst identification codes and their use in burst correction , 1988, IEEE Trans. Inf. Theory.

[16]  S. Golomb,et al.  Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .

[17]  V. C. da Rocha,et al.  Two-dimensional interleaving with burst error-correcting codes , 2002 .

[18]  Solomon W. Golomb,et al.  Optimal Interleaving Schemes for Two-Dimensional Arrays , 2006, IEEE Transactions on Information Theory.

[19]  Alexander Vardy,et al.  Interleaving Schemes for Multidimensional Cluster Errors , 1998, IEEE Trans. Inf. Theory.