Machine learning: trends, perspectives and challenges
暂无分享,去创建一个
While there has been significant progress in the theory and practice in machine learning in recent years, many fundamental challenges remain. Some are mathematical in nature, such as the challenges associated with optimization and sampling in high-dimensional spaces. Some are statistical in nature, including the challenges associated with multiple decision-making. Others are economic in nature, including the need to price services and provide incentives in data-based markets. And others are systems challenges, arising from the need for highly-scalable, robust and understandable hardware and software platforms. I will overview these challenges and others, and propose some paths forward.