Quaternary sulfide Ba6Zn6ZrS14: synthesis, crystal structure, band structure, and multiband physical properties.

Ba6Zn6ZrS14 was synthesized by a traditional salt-melt method with KI as flux. The pale yellow crystals of Ba6Zn6ZrS14 crystallize in the tetragonal space group I4/mcm with a=16.3481 (4) Å and c=9.7221(6) Å. The structure features unique one-dimensional parallel [Zn6S9](6-) and [ZrS5](6-) straight chains. The D2h-symmetric [Zn6S9](6-) cluster serves as the building block of the [Zn6S9](6-) chains. A powder sample was investigated by X-ray diffraction, optical absorption, and photoluminescence measurements. The compound shows multiple-absorption character with three optical absorption edges around 1.78, 2.50, and 2.65 eV, respectively, which are perfectly consistent with the results of first-principles calculations. Analysis of the density of states further revealed that the three optical absorption bands are attributable to the three S(3p(6))→Zr(4d(0)) transitions due to the splitting of the Zr 4d orbitals in the D4h crystal field. The multiband nature of Ba6Zn6ZrS14 also results in photocatalytic activity under visible-light irradiation and three band-edge emissions.

[1]  M. Varnum,et al.  Inherited macular degeneration-associated mutations in CNGB3 increase the ligand sensitivity and spontaneous open probability of cone cyclic nucleotide-gated channels , 2015, Front. Physiol..

[2]  S. Basu,et al.  Optimized luminescence properties of Mn doped ZnS nanoparticles for photovoltaic applications , 2013 .

[3]  S. Dehnen,et al.  From Simple Chalcogenidotetrelate Precursors to Complex Structures and Functional Compounds , 2012 .

[4]  Lin-wang Wang,et al.  Copper‐alloyed ZnS as a p‐type transparent conducting material , 2012 .

[5]  S. Siebentritt,et al.  Kesterites—a challenging material for solar cells , 2012 .

[6]  A. Boochani,et al.  Electronic structure of ZrSxSe2−xby Tran-Blaha modified Becke-Johnson density functional , 2011 .

[7]  Y. Bando,et al.  High-performance Schottky solar cells using ZrS2 nanobelt networks , 2011 .

[8]  P. Feng,et al.  Phase selection and site-selective distribution by tin and sulfur in supertetrahedral zinc gallium selenides. , 2011, Journal of the American Chemical Society.

[9]  Chongyin Yang,et al.  Advanced solar materials for thin-film photovoltaic cells , 2011 .

[10]  Liang Li,et al.  ZnS nanostructures: From synthesis to applications , 2011 .

[11]  Y. Bando,et al.  Electrical Transport and High‐Performance Photoconductivity in Individual ZrS2 Nanobelts , 2010, Advanced materials.

[12]  Fuqiang Huang,et al.  Improved Thermoelectric Properties of Cu‐Doped Quaternary Chalcogenides of Cu2CdSnSe4 , 2009 .

[13]  M. Moustafa,et al.  Growth and band gap determination of the ZrS x Se 2-x single crystal series , 2009 .

[14]  A. Rappe,et al.  Effect of substituting of S for O: The sulfide perovskite BaZrS 3 investigated with density functional theory , 2009 .

[15]  I-Wei Chen,et al.  A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S,Se) , 2009 .

[16]  Fuqiang Huang,et al.  Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1−xInxSe4 , 2009 .

[17]  P. Prathap,et al.  Preparation and characterization of transparent conducting ZnS:Al films , 2009 .

[18]  Meilin Liu,et al.  Fabrication and microstructure of p-type transparent conducting CuS thin film and its application in dye-sensitized solar cell , 2008 .

[19]  R. V. Van Duyne,et al.  Syntheses, crystal structures, and physical properties of La5Cu6O4S7 and La5Cu6.33O4S7. , 2008, Inorganic chemistry.

[20]  Fuqiang Huang,et al.  A promising p-type transparent conducting material: Layered oxysulfide [Cu2S2][Sr3Sc2O5] , 2007 .

[21]  Xinmin Zhang,et al.  Mn2+-doped Ba2ZnS3 phosphor as a potential luminescent material for white LEDs , 2007 .

[22]  X. Lin,et al.  Solution-Processed p-Type Transparent Conducting BaCu2S2 Thin Film , 2007 .

[23]  Teng‐Ming Chen,et al.  Ce3+∕Eu2+ codoped Ba2ZnS3: A blue radiation-converting phosphor for white light-emitting diodes , 2007 .

[24]  Guifeng Li,et al.  p-type transparent conductor: Zn-doped CuAlS2 , 2007 .

[25]  Xinmin Zhang,et al.  Photoluminescence properties of Eu2+ doped Ba2ZnS3 phosphor for white light emitting diodes , 2007 .

[26]  Yen-Hwei Chang,et al.  Photoluminescent properties of Ba2ZnS3:Mn phosphors , 2006 .

[27]  M. Rao,et al.  Luminescent properties of near UV excitable Ba2ZnS3 : Mn red emitting phosphor blend for white LED and display applications , 2006 .

[28]  M. Kanatzidis,et al.  {Sn[Zn4Sn4S17]}6-: a robust open framework based on metal-linked penta-supertetrahedral [Zn4Sn4S17]10- clusters with ion-exchange properties. , 2005, Angewandte Chemie.

[29]  M. Kanatzidis,et al.  K10M4Sn4S17 (M = Mn, Fe, Co, Zn): soluble quaternary sulfides with the discrete [M4Sn4S17]10- supertetrahedral clusters. , 2003, Inorganic chemistry.

[30]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[31]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[32]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[33]  M. Croft,et al.  Ruddlesden-Popper zirconium sulfides—a novel preparation method and characterization of electronic structure , 1995 .

[34]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[35]  B. Eichhorn,et al.  Synthesis and structure of two new Ba2MS4 phases where M = Zr, Hf: A new series of K2NiF4 solids , 1991 .

[36]  M. Saeki,et al.  Preparation and crystal structures of new barium zirconium sulfides, Ba2ZrS4 and Ba3Zr2S7 , 1991 .

[37]  W. Braun,et al.  Prinzip und Meßmethodik der diffusen Reflexionsspektroskopie , 1963 .

[38]  W. Braun,et al.  Principles and Techniques of Diffuse‐Reflectance Spectroscopy , 1963 .

[39]  A. Clearfield The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides , 1963 .

[40]  R. Hoppe,et al.  Zur Kenntnis des Ba2ZnS3 , 1961 .