Evidence that the hrpB gene encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearum

The hrp gene cluster of Pseudomonas solanacearum GMI1000 strain encodes functions that are essential for pathogenicity on tomato and for the elicitation of the hypersensitive response on tobacco. In this study, we present the nucleotide sequence of one of the hrp genes (hrpB) located at the left‐hand end of the cluster and we show that hrpB encodes a positive regulator controlling the expression of hrp genes. hrpB has a coding capacity for a 477‐amino‐acid polypeptide, which shows significant similarity to several prokaryotic transcriptional activators including the AraC protein of Escherichia coli, the XylS protein of Pseudomonas putida and the VirF protein of Yersinia enterocolitica. The predicted hrpB gene product belongs to a family of bacterial regulators different from the previously described HrpS protein of the hrp gene cluster of Pseudomonas syringae pv. phaseolicola. Genetic evidence demonstrates that the hrpB gene product acts as a positive regulator of the expression in minimal medium of all but one of the putative transcription units of the hrp gene cluster and also controls the expression of genes located outside this cluster. We also show in this paper that the transcription of hrpB is induced in minimal medium and is partly autoregulated.

[1]  D. K. Willis,et al.  Current ReviewhrpGenes of Phytopathogenic Bacteria , 1991 .

[2]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[3]  U. Bonas,et al.  Expression of the Xanthomonas campestris pv. vesicatoria hrp gene cluster, which determines pathogenicity and hypersensitivity on pepper and tomato, is plant inducible , 1992, Journal of bacteriology.

[4]  A. Collmer,et al.  Characterization of the hrp cluster from Pseudomonas syringae pv. syringae 61 and TnphoA tagging of genes encoding exported or membrane-spanning Hrp proteins , 1991 .

[5]  C. Boucher,et al.  Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered , 1987, Journal of bacteriology.

[6]  S. Beer,et al.  Creation and complementation of pathogenicity mutants of Erwinia amylovora , 1988 .

[7]  K. Timmis,et al.  A family of positive regulators related to the Pseudomonas putida TOL plasmid XylS and the Escherichia coli AraC activators. , 1990, Nucleic acids research.

[8]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.

[9]  Inouye Sachiye,et al.  Nucleotide sequence of the regulatory gene xylS on the Pseudomonas putida TOL plasmid and identification of the protein product , 1986 .

[10]  J. Caron,et al.  A plasmid-encoded regulatory gene, rns, required for expression of the CS1 and CS2 adhesins of enterotoxigenic Escherichia coli. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[11]  G. Cornelis,et al.  Homology between virF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator , 1989, Journal of bacteriology.

[12]  C. Boucher,et al.  Transcriptional organization and expression of the large hrp gene cluster of Pseudomonas solanacearum. , 1992, Molecular plant-microbe interactions : MPMI.

[13]  Z. Klement Chapter 8 – Hypersensitivity , 1982 .

[14]  B. Iglewski,et al.  Cloning and sequence analysis of a trans-regulatory locus required for exoenzyme S synthesis in Pseudomonas aeruginosa , 1991, Journal of bacteriology.

[15]  Rodger Staden,et al.  Graphic methods to determine the function of nucleic acid sequences , 1984, Nucleic Acids Res..

[16]  H. Krisch,et al.  In vitro insertional mutagenesis with a selectable DNA fragment. , 1984, Gene.

[17]  J. Mekalanos,et al.  Regulatory cascade controls virulence in Vibrio cholerae. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Helinski,et al.  Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Nakazawa,et al.  Nucleotide sequence of the regulatory gene xylS on the Pseudomonas putida TOL plasmid and identification of the protein product. , 1986, Gene.

[20]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[21]  Rodger Staden,et al.  Measurements of the effects that coding for a protein has on a DNA sequence and their use for finding genes , 1984, Nucleic Acids Res..

[22]  U. Bonas Isolation of a Gene Cluster fromXanthomonas campestrispv.vesicatoriathat Determines Pathogenicity and the Hypersensitive Response on Pepper and Tomato , 1991 .

[23]  N. Panopoulos,et al.  The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologous to a highly conserved domain of several procaryotic regulatory proteins , 1989, Journal of bacteriology.

[24]  M. Mindrinos,et al.  Genes and Signals Controlling the Pseudomonas Syringae pv. Phaseolicola-Plant Interaction , 1991 .

[25]  C. Boucher,et al.  hrp genes of Pseudomonas solanacearum are homologous to pathogenicity determinants of animal pathogenic bacteria and are conserved among plant pathogenic bacteria. , 1992, Molecular plant-microbe interactions : MPMI.

[26]  L. Sequeira,et al.  A second cluster of genes that specify pathogenicity and host response in Pseudomonas solanacearum. , 1990 .

[27]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[28]  C. Boucher,et al.  Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. , 1991, Molecular plant-microbe interactions : MPMI.

[29]  S. Beer,et al.  Expression of Erwinia amylovora hrp genes in response to environmental stimuli , 1992, Journal of bacteriology.

[30]  B. Staskawicz,et al.  Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. , 1989, Science.

[31]  S. Lindow,et al.  An ice nucleation reporter gene system: identification of inducible pathogenicity genes in Pseudomonas syringae pv. phaseolicola. , 1989, The EMBO journal.

[32]  G. Cornelis,et al.  Role of the transcriptional activator, VirF, and temperature in the expression of the pYV plasmid genes of Yersinia enterocolitica , 1992, Molecular microbiology.

[33]  J. Shine,et al.  The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Schleif,et al.  Determining residue-base interactions between AraC protein and araI DNA. , 1989, Journal of molecular biology.

[35]  S. Heu,et al.  Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster , 1992, Journal of bacteriology.

[36]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[37]  U. Bonas,et al.  A Xanthomonas Pathogenicity Locus Is Induced by Sucrose and Sulfur-Containing Amino Acids. , 1992, The Plant cell.

[38]  C. Kado,et al.  A plant-inducible gene of Xanthomonas campestris pv. campestris encodes an exocellular component required for growth in the host and hypersensitivity on nonhosts , 1990, Journal of bacteriology.

[39]  D. K. Hawley,et al.  Compilation and analysis of Escherichia coli promoter DNA sequences. , 1983, Nucleic acids research.

[40]  A. Nakazawa,et al.  Expression of the regulatory gene xylS on the TOL plasmid is positively controlled by the xylR gene product. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Hayward Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum. , 1991, Annual review of phytopathology.

[42]  C. Boucher,et al.  Transposon Mutagenesis of Pseudomonas solanacearum: Isolation of Tn5-Induced Avirulent Mutants , 1985 .

[43]  S. Henikoff Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. , 1984, Gene.

[44]  V. DiRita Co‐ordinate expression of virulence genes by ToxR in Vibrio cholerae , 1992, Molecular microbiology.

[45]  D. Martin,et al.  Common Denominators of Promoter Control in Pseudomonas and Other Bacteria , 1989, Nature Biotechnology.

[46]  M. Mindrinos,et al.  Genetic and transcriptional organization of the hrp cluster of Pseudomonas syringae pv. phaseolicola , 1991, Journal of bacteriology.

[47]  B. Marçais,et al.  Cloning of a large gene cluster involved in Erwinia amylovora CFBP1430 virulence , 1990, Molecular microbiology.

[48]  G. Wilcox,et al.  Mutations in the araC regulatory gene of Escherichia coli B/r that affect repressor and activator functions of AraC protein , 1986, Journal of bacteriology.

[49]  J. Williams,et al.  Molecular analysis of a pathogenicity locus in Pseudomonas syringae pv. syringae , 1988, Journal of bacteriology.

[50]  N. Lee,et al.  The araC gene of Escherichia coli: transcriptional and translational start-points and complete nucleotide sequence. , 1980, Gene.

[51]  L. Sequeira,et al.  Cloning of genes affecting polygalacturonase production in Pseudomonas solanacearum , 1991 .