Learning From Personal Longitudinal Dialog Data

We explore the use of longitudinal dialog data for two dialog prediction tasks: next message prediction and response time prediction. We show that a neural model using personal data that leverages a combination of message content, style matching, time features, and speaker attributes leads to the best results for both tasks, with error rate reductions of up to 15% compared to a classifier that relies exclusively on message content and to a classifier that does not use personal data.

[1]  Jure Leskovec,et al.  No country for old members: user lifecycle and linguistic change in online communities , 2013, WWW.

[2]  Claire Cardie,et al.  DREAM: A Challenge Data Set and Models for Dialogue-Based Reading Comprehension , 2019, TACL.

[3]  Timothy W. Finin,et al.  Why We Twitter: An Analysis of a Microblogging Community , 2009, WebKDD/SNA-KDD.

[4]  Edward Ivanovic,et al.  Dialogue Act Tagging for Instant Messaging Chat Sessions , 2005, ACL.

[5]  Peter Young,et al.  Smart Reply: Automated Response Suggestion for Email , 2016, KDD.

[6]  Joelle Pineau,et al.  The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems , 2015, SIGDIAL Conference.

[7]  Craig H. Martell,et al.  Lexical and Discourse Analysis of Online Chat Dialog , 2007, International Conference on Semantic Computing (ICSC 2007).

[8]  Tao Chen,et al.  Creating a live, public short message service corpus: the NUS SMS corpus , 2011, Lang. Resour. Evaluation.

[9]  J. Pennebaker,et al.  The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods , 2010 .

[10]  Virgílio A. F. Almeida,et al.  Characterizing user behavior in online social networks , 2009, IMC '09.

[11]  Cristian Danescu-Niculescu-Mizil,et al.  Chameleons in Imagined Conversations: A New Approach to Understanding Coordination of Linguistic Style in Dialogs , 2011, CMCL@ACL.

[12]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[13]  Jeffrey T. Hancock,et al.  Language Style Matching as a Predictor of Social Dynamics in Small Groups , 2010, Commun. Res..

[14]  Jure Leskovec,et al.  Planetary-scale views on a large instant-messaging network , 2008, WWW.

[15]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[16]  Jianfeng Gao,et al.  A Neural Network Approach to Context-Sensitive Generation of Conversational Responses , 2015, NAACL.

[17]  Erik Cambria,et al.  Deep Learning-Based Document Modeling for Personality Detection from Text , 2017, IEEE Intelligent Systems.

[18]  Verónica Pérez-Rosas,et al.  Look Who's Talking: Inferring Speaker Attributes from Personal Longitudinal Dialog , 2019, ArXiv.

[19]  Torsten Holmer,et al.  Discourse Structure Analysis of Chat Communication , 2008 .

[20]  Rada Mihalcea,et al.  DialogueRNN: An Attentive RNN for Emotion Detection in Conversations , 2018, AAAI.

[21]  Henry Tirri,et al.  Combining Topic Models and Social Networks for Chat Data Mining , 2004, IEEE/WIC/ACM International Conference on Web Intelligence (WI'04).