A tensor optimization algorithm for Bézier Shape Deformation

In this paper we propose a tensor based description of the Bezier Shape Deformation (BSD) algorithm, denoted as T-BSD. The BSD algorithm is a well-known technique, based on the deformation of a Bezier curve through a field of vectors. A critical point in the use of real-time applications is the cost in computational time. Recently, the use of tensors in numerical methods has been increasing because they drastically reduce computational costs. Our formulation based in tensors T-BSD provides an efficient reformulation of the BSD algorithm. More precisely, the evolution of the execution time with respect to the number of curves of the BSD algorithm is an exponentially increasing curve. As the numerical experiments show, the T-BSD algorithm transforms this evolution into a linear one. This fact allows to compute the deformation of a Bezier with a much lower computational cost.

[1]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[2]  Charles A. Desoer,et al.  Linear System Theory: The State Space Approach , 2008 .

[3]  Antonio Falc,et al.  Algorithms and Numerical Methods for High Dimensional Financial Market Models , 2010 .

[4]  Xiang Zhu,et al.  Modifying the shape of NURBS surfaces with geometric constraints , 2001, Comput. Aided Des..

[5]  P. Albertos,et al.  LQ optimal control for multirate sampled data systems , 1999 .

[6]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[7]  Antonio Falcó Montesinos,et al.  Algorithms and numerical methods for high dimensional financial market models , 2010 .

[8]  C. Loan The ubiquitous Kronecker product , 2000 .

[9]  L. Piegl Modifying the shape of rational B-splines. part2: surfaces , 1989 .

[10]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[11]  N. Ahuja,et al.  Compact representation of multidimensional data using tensor rank-one decomposition , 2004, ICPR 2004.

[12]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[13]  Gerhard Opfer,et al.  The derivation of cubic splines with obstacles by methods of optimization and optimal control , 1987 .

[14]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[15]  Xu Li,et al.  Shape Modification of Bézier Curves by Constrained Optimization , 2002 .

[16]  WU Qing-biao,et al.  Shape modification of Bézier curves by constrained optimization , 2005 .

[17]  Nicolás Montés,et al.  Real-time Bézier Trajectory Deformation for Potential Fields planning methods , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Dereck S. Meek,et al.  Constrained interpolation with rational cubics , 2003, Comput. Aided Geom. Des..

[19]  Zbigniew J. Czech,et al.  Introduction to Parallel Computing , 2017 .

[20]  Qingbiao Wu,et al.  Shape Modification of B-Spline Curves via Constrained Optimization for Multi-target Points , 2009, 2009 WRI World Congress on Computer Science and Information Engineering.

[21]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[22]  Javier Sánchez-Reyes,et al.  A Simple Technique for NURBS Shape Modification , 1997, IEEE Computer Graphics and Applications.

[23]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[24]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[25]  Hu Shi Shape Modification of NURBS Surfaces via Constrained Optimization , 2000 .

[26]  Richard Bellman,et al.  Introduction to matrix analysis (2nd ed.) , 1997 .

[27]  Virginie Ehrlacher,et al.  Convergence of a greedy algorithm for high-dimensional convex nonlinear problems , 2010, 1004.0095.

[28]  E. Davidson,et al.  Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents , 1981 .

[29]  A. Nouy Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .

[30]  Nicolás Montés,et al.  Real-time Trajectory Modification based on Bézier Shape Deformation , 2010, IJCCI.

[31]  Gianluca Iaccarino,et al.  A least-squares approximation of partial differential equations with high-dimensional random inputs , 2009, J. Comput. Phys..

[32]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[33]  R. Scattolini,et al.  LQG optimal control of multirate sampled-data systems , 1992 .

[34]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[35]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[36]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[37]  Jerzy S. Respondek Recursive numerical recipes for the high efficient inversion of the confluent Vandermonde matrices , 2013, Appl. Math. Comput..

[38]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[39]  L. Lathauwer,et al.  Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra , 2004 .

[40]  Josep Tornero,et al.  Path planning and trajectory generation using multi-rate predictive Artificial Potential Fields , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Matthew Ming-Fai Yuen,et al.  Unified approach to curve shape modification , 1995, Comput. Aided Des..

[42]  Richard H. Bartels,et al.  Constraint-based curve manipulation , 1993, IEEE Computer Graphics and Applications.

[43]  F. Sánchez,et al.  Flow numerical computation through Bezier shape deformation for LCM process simulation methods , 2008 .

[44]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[45]  Les A. Piegl,et al.  On NURBS: A Survey , 2004 .

[46]  J. Tornero,et al.  Multirate Obstacle Tracking and Path Planning for Intelligent Vehicles , 2007, 2007 IEEE Intelligent Vehicles Symposium.